
D265ModTPhD/EN01

Phd Course
Emerging Digital Technologies

Academic Year
2022/2023

ISBN: XXXXXXXXXXXX

Methods for Certifiable Robustness 
of Deep Neural Networks

Author
Fabio Brau

Supervisor
Prof. Giorgio Buttazzo



ii



Abstract

This Ph.D. thesis delves into the critical issue of enhancing formal and certifiable
guarantees for the robustness of deep neural networks against input perturba-
tions. It explores novel methodologies across five comprehensive chapters. Firstly,
the thesis contributes to ongoing efforts to improve the certifiable robustness of
deep neural networks. It introduces the problem of online estimation of minimal
adversarial perturbation (MAP), focusing on the problem from a geometrical per-
spective. Secondly, the thesis transitions into achieving certifiable robust models
through Lipschitz bounded neural networks. Finally, in pursuit of the same goal, a
novel family of classifiers (SDC) is proposed and compared with the related family
of Lipschitz bounded models.

In detail, the thesis proposes two root-finding-based strategies for estimating
the MAP and provides theoretical results on the goodness of the estimation. Such
a theoretical finding can be leveraged for an online estimation of the robustness of
a classifier in a given input close enough to the classification boundary. Indeed, the
approximate MAP, obtained with the proposed approaches, results in being less
computationally expensive than the one obtained with the state-of-the-art meth-
ods, enabling a fast estimation of the ε-robustness of a classifier for the sample.
Furthermore, the goodness of the estimation is linked to a model-dependent value,
named boundary proximity index Kf (Ωδ), which encapsulates the regularity of the
decision boundary. Subsequently, the thesis addresses the challenge of designing
1-Lipschitz neural networks, which represent a tangible and effective method for
developing certifiably robust classifiers. Therefore, this work includes an exten-
sive comparison of the current state-of-the-art methods for designing 1-Lipschitz
DNNs. It goes further to offer practical suggestions and guidelines for the usage of
1-Lipschitz layers, enhancing their effectiveness for the deployment of these mod-
els in safety-critical systems. Finally, a new family of classifiers, named Signed
Distance Classifiers (SDCs), is discussed. A signed distance classifier provides as
output not only the prediction of the class of a given input x but also the distance
of x from the classification boundary. We provide a theoretical characterization of
the SDCs and propose a tailored network architecture, named UGNN, which, to
the best of our knowledge, represents the first practical approximation of an SDC.

In conclusion, the thesis provides a comprehensive overview of three main direc-
tions for achieving certifiable robustness for deep neural networks, by representing
a modest yet significant stride towards the application of deep neural networks in
safety-critical systems.

iii



iv



Contents

1 Introduction 1
1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Minimal Adversarial Perturbation 5
2.1 Definitions and Theoretical discussions . . . . . . . . . . . . . . . . 6

2.1.1 The case of a binary classifier . . . . . . . . . . . . . . . . . 8
2.1.2 Does the error estimations apply to DNN? . . . . . . . . . . 15

2.2 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Challenges in adversarial robustness . . . . . . . . . . . . . . 16
2.2.2 Penalty-based methods . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Toward the online computation of MAP . . . . . . . . . . . 17
2.2.4 The deepfool method . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 The verification of DNNs . . . . . . . . . . . . . . . . . . . . 18

2.3 MAP via root-finding algorithms . . . . . . . . . . . . . . . . . . . 19
2.3.1 The closest boundary strategy . . . . . . . . . . . . . . . . . 19
2.3.2 Fast outer boundary strategy . . . . . . . . . . . . . . . . . 21
2.3.3 Root-finding algorithms . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Error estimation for multi-class classifiers . . . . . . . . . . . 23

2.4 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Groundtruth distance estimation . . . . . . . . . . . . . . . 24
2.4.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Comparing distances . . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Empirical estimation of the tubular neighborhood . . . . . . 29
2.4.5 Adversarial robustness in the tubular neighborhood . . . . . 30
2.4.6 Comparison with CLEVER . . . . . . . . . . . . . . . . . . 31

3 1-Lipschitz Deep Neural Networks 33
3.1 1-Lipschitz Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Spectral norm and orthogonal projection . . . . . . . . . . . 35
3.1.2 Parameterized 1-Lipschitz Layers . . . . . . . . . . . . . . . 36
3.1.3 1-Lipschitz excluded from the comparison . . . . . . . . . . 38

3.2 Theoretical Comparison . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Analysis of the computational complexity . . . . . . . . . . 41
3.2.2 Analysis of the training memory requirements . . . . . . . . 41

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



vi CONTENTS

3.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Random search of hyperparameter . . . . . . . . . . . . . . 44
3.3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Training and inference times . . . . . . . . . . . . . . . . . . 46
3.4.2 Training memory requirements . . . . . . . . . . . . . . . . 47
3.4.3 Certified robust accuracy . . . . . . . . . . . . . . . . . . . . 48

4 Signed Distance Classifiers 51
4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Signed Distance Classifier . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 The case of a binary classifier . . . . . . . . . . . . . . . . . 54
4.2.2 A characterization property . . . . . . . . . . . . . . . . . . 55
4.2.3 Extension to multiclass classifiers . . . . . . . . . . . . . . . 58

4.3 Unitary-gradient neural networks . . . . . . . . . . . . . . . . . . . 59
4.3.1 Gradient norm preserving layers . . . . . . . . . . . . . . . . 60
4.3.2 Unitary pair difference layers . . . . . . . . . . . . . . . . . 61
4.3.3 Unitary-Gradient Neural Network Architecture . . . . . . . 62

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Accuracy Analysis . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 MAP estimation through UGNN . . . . . . . . . . . . . . . 66
4.4.4 Certifiable robust accuracy . . . . . . . . . . . . . . . . . . . 66

5 Conclusions and Future Works 71
5.1 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . 71
5.2 Impact of the contributions . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Takeways and future directions . . . . . . . . . . . . . . . . . . . . 73

Bibliography 73

Acronyms 75



List of Figures

2.1 Illustration of the MAP problem . . . . . . . . . . . . . . . . . . . . 5
2.2 Graphical proof of the MAP estimation . . . . . . . . . . . . . . . . 14
2.3 Comparison of estimated distances . . . . . . . . . . . . . . . . . . 26
2.4 Boxplot Distance Comparison . . . . . . . . . . . . . . . . . . . . . 28
2.5 Attack success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Radar Plot: 1-Lipschitz Comparison . . . . . . . . . . . . . . . . . 33
3.2 Training time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Inference troughput . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Inference and training memory . . . . . . . . . . . . . . . . . . . . . 48
3.5 Certified robust accuracy . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Signed Distance Classifier . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 UPD loss distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Unitary Gradient Neural Network . . . . . . . . . . . . . . . . . . . 64
4.4 MAP estimation through SDC . . . . . . . . . . . . . . . . . . . . . 67
4.5 Certifiable robust accuracy of SDC . . . . . . . . . . . . . . . . . . 69

vii



viii LIST OF FIGURES



Chapter 1
Introduction

A
dversarial examples (AEs) are a decade-old phenomenon that occurs in
the machine learning models, first highlighted by Biggio et al. [1] under the

name of evasion attacks, and independently discovered by Szegedy et al. [2] in
deep neural networks. In the field of image classification, adversarial examples are
meticulously crafted inputs that, while visually indistinguishable to humans from
unaltered images, lead to erroneous classifications by the models. This definition
is extendable to a broader spectrum of machine learning detection or classification
models. Here, an adversarial example is a maliciously crafted input with high sim-
ilarity to natural uncorrupted samples, yet remains difficult to detect, ultimately
resulting in the failure of the machine learning model to perform accurately. This
dual characteristic underscores the critical challenge adversarial examples pose to
the integrity and reliability of machine learning systems.

This phenomenon presents two main interpretations within the field of aca-
demic discourse. On one hand, adversarial examples (AEs) are recognized as a
significant security threat, which imposes considerable limitations on the appli-
cation of machine learning in cyber-physical systems, raising profound security
implications in critical areas such as spam and malware detection, object detec-
tion, and semantic segmentation, [3], [4]. On the other hand, despite the large
amount of research, AEs are acknowledged as a partially understood phenomenon,
shedding light on the black-box nature of deep neural networks. A continuously
growing literature highlights the challenges related to the instability and robust-
ness of such models, by also pointing the finger at the high Lipschitz constant of
the — standard — deep neural networks as a direct cause of sensitivity to input
perturbation. This thesis will delve into the second interpretation, seeking to en-
hance our comprehension of AEs and their role and impact on the functioning of
neural networks.

The scientific community initially focused on establishing the existence of AEs,
and on the development of algorithms to find them, aiming at developing a compre-
hensive understanding of the phenomenon and devising effective countermeasures
to mitigate the sensitivity of DNNs to these perturbations. For this purpose,
we only focus on the attacks in a white-box setting, where the attacker has full
knowledge of the model’s architecture and parameters. In particular, the Fast
Gradient Sign (FGSM) method, proposed in [5], has been used to produce a first
attempt of adversarial training, a technique that aims to improve the robustness of

1



2 CHAPTER 1. INTRODUCTION

a model by augmenting the training set with adversarial examples. Furthermore,
the DeepFool (DF) [6] method, is proposed instead as an empirical measurement
of the robustness of a neural model; meant as an estimated-measure of the sen-
sitivity to the perturbation with a given magnitude that produce a failure of the
classification. Finally, more recent algorithms, such as the methods proposed in
[7]–[11], were designed to find the minimal perturbation that produces a failure of
the classification in a given input.

For the sake of providing certifiable guarantees on the safety and reliability
of the prediction in a given sample, formal countermeasures became the focal
point of the scientific community’s efforts. For this purpose, Verification Methods
aim to formally check, for a given input and a threshold ε, the sensitivity of the
prediction against effective adversarial perturbation of magnitude that does not
exceed the threshold ε. This effectively provides a measure of trustworthiness for
any given input. Theoretically, such strategies naturally lead towards a certifiable-
safe model, obtained by adopting a detection-rejection-strategy of unsafe inputs on
top of the original one. In practice, however, the computational complexity of these
methods is prohibitive, see [12], [13], hence the resulting models are not suitable for
real-world applications. This aspect mainly motivates the results discussed in the
Chapter 2, in which a lighter version of the analysis provided in [14] is proposed.
The final goal of the work is to provide an approximated solution to the verification
problem, presented as the problem of finding the minimal adversarial perturbation.
The analysis brought to an interesting factor named Boundary Proximity Index
(BPI) that, once calculated, can provide formal guarantees on the two methods
for the approximated solution of the verification problem. Unfortunately, such a
coefficient can not be explicitly calculated, hence the experimental part aims at
confirming the theoretical findings, and at providing a way to estimate the BPI in
a real-world scenario.

Nevertheless, as one might expect, a naive approach to robust classification
through a detection-rejection strategy, as discussed in [15], is insufficient for en-
suring a robust model. Indeed, without additional countermeasures, a standard
neural network exhibits a notably low empirical robustness, as shown in the pa-
per mentioned above. Such networks typically position input samples close to
decision boundaries, making them highly susceptible to adversarial perturbations.
This leads to a high likelihood of rejecting input samples, which in turn results in
reduced accuracy of the classifier. Adversarial training strategies, [16], can allevi-
ate this problem by presenting adversarial examples during the training stage of
the model, improving the robustness by increasing the margin between the input
samples and the decision boundaries. Nevertheless, even though increasing the
empirical robustness, such strategies do not provide certifiable guarantees at in-
ference time, and hence, without external supports (e.g. given by verification and
detection strategies), they are still not enough adequate for the reliable deployment
of a machine learning model in cyber-physical systems.

Therefore, the pursuit of an efficient and accurate robust model has prompted
the scientific community to explore various approaches. Beginning with the semi-
nal work of [2], it was established that the Lipschitz constant of a neural classifier
is closely linked to the model’s instability, as evidenced by the existence of ad-
versarial examples. Consequently, one way to address the instability problem can



3

involve constraining the Lipschitz constant of a model by limiting the spectral
radius of its weights, which has proven to be an effective countermeasure, but
not without challenges and concerns. Indeed, training a model with a bounded
Lipschitz constant requires a substantial effort, and results in a robust accuracy
that may not rival that of a more straightforward model.

Lipschitz bounded neural networks can provide certifiable guarantees on the
sensitivity of the model in a given input x. In detail, for such models, the differ-
ence between the two largest output components of the DNN directly provides a
lower-bound, in Euclidean norm, of the minimal adversarial perturbation capable
of fooling the model in x. The Chapter 3 provides a comparison of various methods
for obtaining 1-Lipschitz neural networks known in the literature, based on the re-
sults presented in the paper [17], which is currently under review. Indeed, although
different methods for achieving 1-Lipschitz DNNs have been proposed in the liter-
ature, understanding the performance under different metrics (e.g., training time,
memory usage, accuracy, certifiable robustness) is not straightforward but yet ex-
tremely useful, since they have different impacts on different applications. For
this reason, the chapter provides a thorough theoretical and empirical comparison
between methods by evaluating them in terms of memory usage, speed, and cer-
tifiable robust accuracy. In conclusion, some guidelines and recommendations are
given, to support the user in selecting the methods that work best depending on
the available resources.

As anticipated above, 1-Lipschitz DNNs allow online verification through a
single forward of the model. Nevertheless, only a lower bound of the smallest
adversarial perturbation can be deduced, possibly resulting in a large number of
false postive rejections, i.e. samples for which the lower bound is lower than a
certain safe-threshold ε, but practically robust against perturbation of magnitude
lower than ε. For this reason, in the Chapter 4, a novel classification model named
signed distance classifier is proposed, based on the results discussed in the paper
[18].

The (SDCs), from a theoretical perspective, directly output the exact dis-
tance of a given input from the classification boundary, rather than a probability
score (e.g., SoftMax), and, like any other 1-Lipschitz model, represents a family
of robust-by-design classifiers. As proved in the dedicated section, a signed dis-
tance classifier is characterized (in a region close to the decision boundary) by
the property of having a gradient with a constant Euclidean norm equal to 1. To
practically address such a theoretical requirement of an SDC, a network archi-
tecture named Unitary-Gradient Neural Network is presented, that leverages the
1-Lipschitz orthogonal layers in order to guarantee the unitary-gradient property.
The chapter is comprehensive of experimental results that show that the proposed
architecture approximates a signed distance classifier, hence allowing an online
certifiable classification of any input at the cost of a single inference. As shown
in the experimental part, even though the estimation of the minimal adversarial
perturbation is particularly accurate, the resulting classification accuracy does not
outperform the accuracy of the strictly related Lipschitz-bounded models.



4 CHAPTER 1. INTRODUCTION

1.1 Structure of the thesis

The structure of the thesis is summarized as follows

• The Chapter 1 serves as an introduction to the main scope of the thesis,
effectively guiding the reader through the motivations behind each chapter.
It lays the groundwork for understanding the broader context and objec-
tives of the thesis. The aim is to provide an aerial view of the three key
works proposed in the thesis, illustrating how they are interconnected and
contribute to the overarching theme. This approach helps in establishing a
cohesive narrative, connecting individual research efforts to the larger goal of
advancing the field of machine learning with a focus on adversarial examples
and model robustness.

• Chapter 2 contains a reformulated version of the work proposed in the
paper [14], where the Theorem’s proof has been refined, and a greater focus
on the property of the model is given by explicitly defining the boundary
proximity index.

• Chapter 3 aggregates the results proposed in the paper currently under
review, [17], and integrates them with the corresponding appendix to form
a unified and coherent narrative flow. It is important to clarify that the pa-
per is a ch-authored work. Specifically, my contributions mostly involve the
comparisons of certifiable robustness including the random-search needed
for the hyper-parameters tuning, while Bernd’s contributions mostly involve
the theoretical estimation of the algorithmic complexity, as well as the ex-
perimental estimation of the memory usage and timing.

• Chapter 4 proposes the signed distance classifier discussed in [18], including
a datailed proof of the characterization theorem.

• The Chapter 5 presents the key takeaways and potential future research
directions, effectively concluding the elaborate.



Chapter 2
Minimal Adversarial Perturbation

In the last decade, Deep Neural Networks (DNNs) achieved impressive perfor-
mance on computer vision applications, such as image classification [19] and ob-
ject detection [20]. Despite their excellent results, all those models are liable to
adversarial attacks, defined as input perturbations intentionally designed to be
undetectable to humans but causing the model to make a wrong output [1], [2].
Extensive studies have been conducted to improve these attacks through effec-
tive techniques that minimize the distance from the original input to make the
resulting adversarial input imperceptible to humans.

Figure 2.1: Illustration of the addressed problem. The blue points are DNN inputs, while the
black line f(x) = 0 is the classification boundary that distinguishes points belonging to the
class −1 (f(x) < 0) and class 1 (f(x) > 0). The dotted line starting from each point is the
unknown optimal perturbation, which is orthogonal to the classification boundary. The black
arrows represent the gradient directions. Observe that the gradients computed on the points
whose distance from the boundary is closer than σ provide a good approximation to the minimal
adversarial distance.

Finding the closest adversarial example or in other terms, the Minimal Ad-
versarial Perturbation (MAP) capable of fooling the model, is a notoriously hard
problem, because it involves the solution of a non-convex optimization problem
with highly-irregular constraints, due to the intrinsic nature of DNNs [2], [6]–[8].
At present, this is still a hot research topic since allows retrieving useful infor-
mation on the robustness of the model under adversarial attacks. Almost all the
powerful attacks presented in the literature (e.g., [2], [5]–[9], [16]) rely on the loss
function gradient to build up optimization methods for crafting those perturba-
tions. In a nutshell, their idea is moving toward the direction that mostly increases
the loss function, thus increasing the probability of misclassification.

5



6 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

In light of these observations, our study concentrates on analyzing an approx-
imate solution for the minimal adversarial perturbation problem. The goal is to
devise a method that is as swift as possible, primarily relying on fewer forward
and backward passes, supported by theoretical findings on the existence and the
accuracy of a solution. To achieve this, we proposed two strategies, that con-
sistently offer an upper bound of the exact solution, that rely on a few amount
of inferences of the model; e.g., in one of the proposed methods, we reduce the
backward passes to just one and limit the forward computations to fewer than
20. Due to the simplicity of these strategies, we have also focused on providing
theoretical analysis. This analysis aims at supporting the methods in two ways: It
demonstrates the existence of a solution in a region close to the decision boundary;
it provides an estimation of the error committed depending on the first and the
second derivative of the classifier f . Furthermore, empirical evaluations show that
such a theoretical error estimation can be applied to a real-case scenario (classifi-
cation through deep neural networks). In particular, we exploit it to estimate the
robustness of a sample within a specific neighborhood with high confidence.

More specifically, Section 2.1 proves the existence of a tubular neighborhood
with radius σ where the error between the approximate and the exact solution
can be bounded. An illustration of such an estimation can be found in Figure 2.1,
where x is the input vector, f(x) is the classification function learned by the
network, and the red line represents the radius σ. Such a radius depends on a
coefficient named boundary proximity index (BPI) that measures the reachability
of a solution only by following the gradient direction and that only depends on the
first and second derivative of the classifier. Section 2.4 reports a set of experiments
with two specific aims. The first aim is to compare the distance computed by the
proposed approximated strategies with the solution of a costly method based on
a global search. The second aim is to devise an empirical estimation of the radius
σ (that can not be explicitly computed) and using it to estimate the robustness
of the model in a given input with high confidence. In summary, this chapter

• Proposes two strategies based on a root-finding algorithm to approximate
the solution of the minimal adversarial perturbation problem in a region
close to the classification boundary.

• Provides an analytical estimation of the neighborhood in which the previous
analysis holds by leveraging a novel coefficient that measures the regularity
of the classifier.

2.1 Definitions and Theoretical discussions

In this section, we will analyze and provide an answer to the following questions.

Is the only gradient direction in a given sample capable of providing a good
estimation of the minimal adversarial perturbation, i.e, the smallest perturbation
the fools a classifier? How can the precision of such a approximation be bounded
with respect to actual MAP, according to the regularity of the classifier?

Through this section, we show that, under certain assumptions, the solution
of the minimal adversarial perturbation problem has a natural and intuitive esti-
mation obtained by following the gradient direction. Furthermore, we show the



2.1. DEFINITIONS AND THEORETICAL DISCUSSIONS 7

relation between such an estimation with the first and the second derivative of the
classifier ∇f(x) and ∇2f(x).

Henceforth, we consider a classifier modeled by a continuous function that
accepts an input vector of length n and returns a discrete result ranging from 1 to
C, where C denotes the total number of classes that can be identified. Specifically,
consider f : Rn → RC as a continuous function. For a given input x, the predicted
class k̂(x) is determined as the index that corresponds to the highest component
of f(x). Formally, k̂(x) is defined so that fk̂(x)(x) > fk(x) for all k 6= k̂(x). If

the highest value is not unique, that is, fk̂(x)(x) = maxk 6=k̂(x) fk(x), then we assign

k̂(x) = 0 to indicate an unreliable classification. Moreover, it is useful to define
Rj := {x ∈ Rn : k̂(x) = j} as the region in the input space corresponding to class
j, and Bj as the classification boundary for class j, or the edge of Rj. Let x be
a sample classified with label l. The problem of finding the minimal adversarial
perturbation δ∗, such that x + δ∗ is the closest adversarial example to x, can be
formally stated with the following minimum problem

d(x, l) = inf
δ∈Rn

‖δ‖

s.t k̂(x+ δ) 6= l,
(MAP)

where ‖·‖ is the euclidean norm, and the scalar value d(x, l) represents the distance
between x and the closest adversarial example x+δ∗, or, equivalently, the distance
of x from the classification boundary Bl.

Constrained minimal adversarial perturbation

Note that the formulation given by Equation (MAP) is merely theoretical since
does not take into account two important constraints: the box-constraint and the
integer-constraint. When the input of the classifier is constituted by images, the
box-constraint ensures that the solution δ is a perturbation such that 0 ≤ x+δ ≤ 1.
This particularly belongs to the fact that typical inputs of classifiers are images,
for which the pixel values are normalized to be in the range [0, 1]. For the same
reason — i.e, when images are the input of the classifier — the integer-constraint
ensures that each pixel (x + δ)i is discretized into Q color-levels (e.g., Q = 256),
that is, Q · (xi + δi) ∈ [0, Q− 1] ∩ N. For the sake of completeness, we report the
adversarial perturbation problem with constraints (C-MAP) as,

d(x, l) = inf
δ∈Rn

‖δ‖

s.t k̂(x+ δ) 6= l,

0 ≤ x+ δ ≤ 1

Q · (x+ δ) ∈ ([0, Q− 1] ∩ N)n

. (C-MAP)

Nevertheless, note that this section only focuses on the unconstrained formula-
tion, as similarly done in [6], since the analytical instruments are more compliant
with this formulation. However, note that this aspect does not reduce generality,
since the solution of MAP provides a lower bound of the constrained problem C-
MAP. Therefore, to reduce clutter, unless differently specified, the domain of the
perturbation δ is equal to Rn.



8 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

2.1.1 The case of a binary classifier

To enhance understanding, we initially focused on the binary classification case.
A detailed discussion on the extension of the results to the general multiclass
scenario is presented in Section 2.3.4. In contrast to a multiclass classifier, a
binary classifier is represented as a scalar function f : Rn → R, from which
the classification is deduced looking at the sign of its output, that is, for each
x ∈ Rn, k̂(x) = sgn(f(x)). It is also important to note that for a binary classifier,
the classification boundary is independent of the class. Thus, without loss of
generality, we can define the boundary as the set of zeros of the function f , that
is B = {x ∈ Rn : f(x) = 0}.

Furthermore, observe the MAP problem can be reformulated differently. In-
deed, given x of class l, the minimum distance from the region other than l co-
incides with the distance from the decision boundary. In other terms, the in-
equality constraint can be substituted by an equality constraint f(x + δ) = 0.
This fact can be proved by observing that, if δ∗ is a solution of MAP, and if
sgn(f(x)) 6= sgn(f(x + δ∗)) 6= 0, then, due to the continuity of f , there exists
0 < t < 1 such that f(x + tδ∗) = 0, and hence ‖tδ∗‖ < ‖δ∗‖, which is a contra-
diction. Based on this observation, we can replace the original problem with the
following minimization problem with an equality constraint

d(x, l) = d(x) = inf
δ
‖δ‖

s.t f(x+ δ) = 0,
(B-MAP)

equivalent to a minimum distance problem from set B. Finally, since the aim of
the section is to analyze how the gradient direction is effective in estimating the
solution of MAP, we must define the following minimal-root problem

t(x) = inf
t∈R+

t

s.t f(x+ tν(x)) = 0
(B-RMP)

where ν = −sgn(f(x)) ∇f(x)
‖∇f(x)‖ .

Before going deeper into the mathematical details, it is worth observing that
the gradient ∇f(p) is orthogonal to the boundary B for each p ∈ B, and that, if
x is close to the boundary, then ∇f(x) ≈ ∇f(p∗) (where p∗ = x + δ∗) provides
the fastest direction to reach the boundary. Hence, it is natural to observe that is
reasonable to approximate B-MAP with the minimal root problem B-RMP. The
goodness of such an estimation can be summarized in the Section 2.1.1, where
we show that in a neighborhood of the decision boundary, the precision of the
estimation is strongly related to a certain factor that depends on the first and
second derivative of the classifier f , as informally summarized in the following
Theorem.

Theorem (Informal MAP estimation). Close enough to the decision boundary,
the solution of B-MAP can be estimated by the solution of B-RMP through the
following inequality

1

ρ
t(x) ≤ d(x) ≤ t(x),



2.1. DEFINITIONS AND THEORETICAL DISCUSSIONS 9

where the ρ is a constant factor, and the neighborhood for which the inequality
holds depends on the following ratio

infx∈Ω ‖∇f(x)‖
supx∈Ω ‖∇2f(x)‖

. (2.1)

The set Ω is a large neighborhood of B with compact closure.

The proof of the estimation theorem leverages the regularity of the classifier f
and the proximity of the sample to the decision boundary. For this reason, let us
introduce the definition of tubular neighborhood of the decision boundary.

Definition 1 (Tubular neighborhood). Given a positive number σ > 0, the tubu-
lar neighborhood of the boundary Ωσ of radius σ is the set of the samples whose
distance from the classification boundary B is less than σ. In formulas,

Ωσ := {x ∈ Rn : d(x) < σ}.

Henceforth, we assume that the function f satisfies the following properties.

Assumption A. The function f is of class C2(Rn), i.e., is derivable twice and
the second derivative is continuous.

Assumption B. The function f is strictly positive outside some compact.

Assumption C. The gradient ∇f is not zero in B (i.e., 0 is a regular value of f).

Although the three Assumptions A, B,C are not valid in general, they are
not restrictive for a common neural-classifier. Further details on this aspect will
be deepened in Section 2.1.2. Assumption B ensures that B is a compact set,
and hence that the minimum distance problem formulated in B-MAP admits a
solution for each x ∈ Rn. Nevertheless, there is no guarantee that for each x ∈ Rn

there exists a unique closest point in B. Assumption C ensures that there exists
an open neighborhood Ωδ of the boundary such that ∇f�Ωδ 6= 0. Observe also that
for any δ′ ≤ δ the gradient never zeros in Ωδ′ . As anticipated above, the regularity
of the classifier has a big impact on the estimation theorem, thus we propose the
following measure of regularity.

Definition 2 (Boundary Proximity Index). For a given binary classifier f the
Boundary Proximity Index (BPI), on a neighborhood Ω ⊃ B with a compact
closure Ω, expresses a measure of the reachability of the decision boundary con-
sidering

Kf (Ω) =
infx∈Ω ‖∇f(x)‖
‖∇2f‖Ω

, (BPI)

where the shortcut ‖ · ‖Ω is the maximum operatorial norm on the compact, i.e.,

‖∇2f‖Ω = max
x∈Ω
‖∇2f(x)‖.

We anticipate that the BPI is a global measure of the reachability of the
decision boundary from any point in the open set Ω. Observe that such an index
is not defined for a linear classifier, that indeed has a not compact boundary
since does not satisfy Assumption B. However, if we though a linear classifier



10 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

g(x) = wTx + b as the limit of gt(x) = 1
t
‖x + 1

2
t w‖2 + b for t → ∞, it is natural

to estend BPI, with Kg(x) = +∞.

The proof of the main theorem will be decomposed into three main steps, each
one summarized in the dedicated lemma to facilitate readability.

1. A first Lemma, provides a bound of the angle between the direction given
by the gradient w.r.t. the optimal direction. The lemma provides a radius
σ1 (depending on the BPI) for which the bound holds;

2. A second Lemma, bounds the portion of the surface that contains the optimal
solution of B-MAP between two hyperplanes. Another radius σ2 is given,
depending on the same index;

3. Finally, the proof of the Theorem shows that an intersection between the
hyperplanes and gradient direction exists. This fact directly gives an esti-
mation of the solution of B-RMP, and thus an estimation of the optimal
solution.

Lemma 1 (Angular Bound). Let Ωδ ⊃ B be a tubular neighborhood such that
∇f�Ω̄ 6= 0. For any measure of similarity α ∈ (0, 1), let σ1(α) = 1−α

2
Kf (Ωδ). Then

for each x ∈ Ωσ1(α), the following inequality holds

∇f(x)T∇f(π(x))

‖∇f(x)‖‖∇f(π(x))‖
> α, (2.2)

where π(x) is a solution of B-MAP.

Proof. Let p ∈ B. By the definition of Ωδ, the function Fp(x) =
〈
∇f(x)
‖∇f(x)‖ ,

∇f(p)
‖∇f(p)‖

〉
is differentiable in the neighborhood of p of radius δ, i.e., Fp ∈ C1(B(p, δ)), and,
hence, satisfies the hypothesis of Taylor Theorem in several variables, [21]. In
detail

∇Fp(x) =

(
∇2f(x)

‖∇f(x)‖
− ∇f(x)∇f(x)T∇2f(x)

‖∇f(x)‖3

)
∇f(p)

‖∇f(p)‖
is a continuous vector field in the ball of radius δ, and so for each x ∈ B(p, δ)
there exists ξ ∈ B(p, δ) such that

Fp(x) = 1 + (x− p)T∇Fp(ξ). (2.3)

By rearranging the terms of Equation (2.3) and considering the supremum on the
right side, we can deduce the following chain of inequalities

|1− Fp(x)| ≤ max
ξ∈Ω
|(x− p)T∇Fp(ξ)|

≤ max
ξ∈Ω
‖∇Fp(ξ)‖ · ‖p− x‖

≤ max
ξ∈Ω

∥∥∥∥ ∇2f(ξ)

‖∇f(ξ)‖
− ∇f(ξ)∇f(ξ)T∇2f(ξ)

‖∇f(ξ)‖3

∥∥∥∥ · ‖p− x‖
≤ max

ξ∈Ω

∥∥∥∥Id− ∇f(ξ)

‖∇f(ξ)‖
∇f(ξ)T

‖∇f(ξ)‖

∥∥∥∥ · ∥∥∥∥ ∇2f(ξ)

‖∇f(ξ)‖

∥∥∥∥ · ‖p− x‖
(2.4)



2.1. DEFINITIONS AND THEORETICAL DISCUSSIONS 11

where, for any matrix A ∈ Rn×n, the notation ‖A‖ represents the operator-norm
inducted by the Euclidean norm. Observing that for each ‖v‖ = 1, ‖Id− vvT‖ ≤
1 + ‖vvT‖ ≤ 2, the first term can be simplified and so we can reduce the last
inequality to the following

|1− Fp(x)| ≤ 2‖∇2f‖Ω

infξ∈Ω ‖∇f(ξ)‖
· ‖p− x‖ =

2‖p− x‖
Kf (Ω)

. (2.5)

By rearranging the terms, we can finally deduce that

Fp(x) ≥ 1− 2‖x− p‖
Kf (Ω)

,

from which we can deduce that the condition 1− 2‖x−p‖
Kf (Ω)

> α is a sufficient condition

to Fp > α for each x ∈ B(p, δ). Rearranging the terms, we deduce that

‖p− x‖ ≤ 1− α
2
Kf (Ωδ) = σ1(α), ⇒ Fp(x) > α

Because σ1(α) is an uniform estimation for each p, then we deduce the thesis for
all the x ∈ Ωδ and p = π(x).

Intuitively, a small portion of the boundary can be enclosed between two affine
parallel hyperplanes. This is the aim of the following lemma.

Lemma 2 (Hyperplanes Bound). Let Ωδ ⊃ B be a tubular neighborhood such that
∇f�Ω̄ 6= 0. For each thickness factor β ∈ (0, 1), let σ2(β) = 2βKf (Ωδ). Then, for
each p ∈ B, the open set

Γr(p) :=
{
p+ v : |vT∇f(p)| < βr‖∇f(p)‖, v ∈ Rn

}
contains B ∩B(p, r) for any r < σ2(β).

Proof. Let p ∈ B and q ∈ B ∩ B(p, r) where r < σ2(β). By applying the Taylor
Theorem [21] to f centered in p, we deduce that there exists ξ ∈ B(p, r) such that

0 = (p− q)T∇f(p) +
1

2
(p− q)T∇2f(ξ)(p− q) (2.6)

from which, by considering the maximum over ξ on the right side, we can deduce
the following inequality

|(p− q)T∇f(p)| < 1

2
‖p− q‖2‖∇2f‖Ωδ

. (2.7)

Considering the following chain of inequalities

‖p− q‖ < 2βKf (Ωδ)

⇒ ‖p− q‖ < 2β
‖∇f(p)‖
‖∇2f‖Ωδ

⇒ 1

2
‖p− q‖‖∇2f‖Ωδ

< β ‖∇f(p)‖

⇒ 1

2
‖p− q‖2‖∇2f‖Ωδ

< β ‖p− q‖‖∇f(p)‖

(2.8)



12 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

we deduce that

|(p− q)T∇f(p)| < β‖p− q‖‖∇f(p)‖ < βr‖∇f(p)‖. (2.9)

This shows that q = p + (q − p) ∈ Γr(p) for any q ∈ B(p, r), where r < σ2(β),
from which we deduce the thesis.

The Lemma above shows that the boundary B can be locally bounded by the
open set Γr(p) for each point p and for each radius r not larger than σ2(β). Further-
more, the border B splits the set B(p, r)∩ Γr(p) in a way that f keeps a constant
sign in the two hyperplanes R± :=

{
p+ v : vT∇f(p) = ±βr‖∇f(p)‖, v ∈ Rn

}
that are included in the frontier of Γr(p). This statement is condensed in the
following observation, deduced as a direct consequence of Lemma 2.

Observation 1. Let β ∈ (0, 1) and σ2(β) of Lemma 2. Let x ∈ Ωσ2(β), p = π(x)
a solution of B-MAP, and let r = ‖x− p‖. The hyperplane

R :=
{
p+ v : vT∇f(p) = −sgn(f(x))βr‖∇f(p)‖, v ∈ Rn

}
is such that

∀y ∈ R ∩B(p, r), sgn(f(y)) = −sgn(f(x)). (2.10)

Proof. Without loss of generality, we can initially assume f(x) < 0. The proof
can be decomposed in two steps:

(i) Prove that p1 := p+ rβ ∇f(p)
‖∇f(p)‖ ∈ R and f(p1) > 0;

(ii) Prove that if y ∈ R ∩B(p, r), then sgnf(p1) = sgnf(y).

To prove the first statement, let pt := p + tβr ∇f(p)
‖∇f(p)‖ for t ∈ [0, 1] be the segment

going from p to p1. Since f is differentiable in p, then

f(pt) = r t∇f(p)T
(
∇f(p)

‖∇f(p)‖

)
+ o(pt),

and because o(pt)/t→ 0, we can deduce that sgn(f(pt)) = sgn(r‖∇f(p)‖) = 1 for
small t. Let us now prove by contradiction that f is positive in p1. If f(p1) ≤ 0,
then there exist τ ∗ ≤ 1 such that f(pτ∗) = 0. Hence, ‖p − pτ∗‖ = |τ ∗rβ|, from
which pτ∗ ∈ B(p, τ ∗r). Let us consider the smaller radius r∗ = τ ∗r and observe that

pτ∗ 6∈ Γr∗(p). In fact, τ ∗βr ∇f(p)T

‖∇f(p)‖∇f(p) = βr∗‖∇f(p)‖ shows that pτ∗ lays on the

topological border of the set Γr∗(p). This brings to a contradiction for Lemma 2
being pτ∗ ∈ B \ Γr∗(p). Furthermore, if y ∈ B(p, r) ∩ R, the second statement
can be proved by contradiction observing that, if f(y) ≤ 0, then there exists
z ∈ R ∩ B(p, r) for which f(z) = 0, and thus that z ∈ B and z 6∈ Γr(p) ∩ B(p, r),
which brings to a contradiction by Lemma 2. In conclusion, the case f(x) > 0

can be deduced by considering the segment pt := p − tβr ∇f(p)
‖∇f(p)‖ , to prove that

f(p1) < 0.

The following observation ensures that the gradient ∇f(π(x)) in a solution
π(x) of B-MAP in x, coincides with the optimal direction. This is a widely known
result that can be proved by applying the Lagrangian Theorem. The details of the
proof have been reported, expert readers can skip directly to the main theorem.



2.1. DEFINITIONS AND THEORETICAL DISCUSSIONS 13

Observation 2. Let x ∈ Rn, and let π(x) a solution of B-MAP. Then, the optimal
direction π(x)− x is parallel to ∇f(π(x)). In formulas,

x− π(x)

‖x− π(x)‖
= sgn(f(x))

∇f(π(x))

‖∇f(π(x))‖
. (2.11)

Proof. By construction, π(x) is the solution of the minimum problem B-MAP.
Then, by the Lagrangian Necessary Condition Theorem (see [22, p. 278]) un-
der the Assumption C, there exists λ∗ ∈ R such that ∇L (π(x), λ∗) = 0, where
L(p, λ) = ‖x − p‖ + λf(p) is the lagrangian of the minimum problem. Observe
that ∇L (π(x), λ∗) = 0 implies that

λ∗∇f(π(x)) =
x− π(x)

‖x− π(x)‖
. (2.12)

From this identity, considering the Euclidean norm at each side, we deduce that
|λ∗| = 1

‖∇f(π(x))‖ . It remains to prove that sgn(λ∗) = sgn(f(x)). To prove this

statement, we proceed in three steps: (i) we prove that the segment pt that con-
nects x to π(x) is such that sgn(f(pt)) = sgn(f(x)) for t > 0; (ii) we show that for
t ≈ 0, the sign of sgn(f(pt)) is equal to the sign of ∇f(π(x))T (x− π(x)); (iii) by
leveraging identity Equation (2.12), we show that the sign of λ∗ is equal to the sign
of ∇f(π(x))T (x− π(x)). Let pt := π(x) + t(x − π(x)) where t ∈ [0, 1]. Observe
that sgn(f(x)) = sgn(f(pt)) for each t ∈ (0, 1]. In fact, by contradiction, if there
exists τ with sgn(f(x)) 6= sgn(f(pτ )), then, by the Intermediate Zero Theorem
applied to function f , it would exist a τ∗ ∈ (0, 1) such that f(pτ∗) = 0. This would
imply that

‖x− pτ∗‖ = ‖(1− τ∗)(x− π(x))‖ < ‖x− π(x)‖,
which is a contradiction because ‖x− pτ∗‖ < d(x) but π(x) solves B-MAP. Based
on this fact, observe that, since f is differentiable in p0, then

f(pt) = f(p0) +∇f(p0)T (pt − p0) + o(pt)

= t∇f(π(x))T (x− π(x)) + o(pt),

where o(pt)/t→ 0 when t→ 0, from which we deduce that for small t, sgn(f(pt)) =
sgn

(
∇f(π(x))T (x− π(x))

)
. In conclusion, multiplying each term of Equation (2.12)

by ∇f(π(x))T , we deduce that the sign of the first term of the equivalence is equal
to sgn(λ∗), which concludes the proof.

Lemma 1 and Lemma 2 are linked by the following intuitive connection. In a
geometrical sense, d(x) represents the length of the shortest path needed to reach
the boundary, which is obtained by moving from x along −∇d(x). Similarly, let
t(x) be the length of the path (if there exists one) required to reach the boundary

by following the direction ν(x) = −sgn(f(x)) ∇f(x)
‖∇f(x)‖ , in formulas x+t(x)ν(x) ∈ B.

To ensure the existence of such a t(x), we can leverage two conditions. If we admit
that ν(x) is not similar to the optimal one (i.e., we assume a α 6≈ 1 in Lemma 1),
then the existence of t(x) would only be guaranteed by an almost straight boundary
B, which requires a thickness factor close to zero, β ≈ 0. Vice versa, if we admit
a highly irregular boundary (i.e., β 6≈ 0), then the existence of t(x) would only
be guaranteed by a direction ν(x) close to the optimal one. This would require
α ≈ 1.



14 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

This is the main idea of the following theorem, which, by balancing the two
parameters α and β, ensures: (i) The existence of t(x); and (ii) The estimation
of d(x) through t(x) defined in Equation (2.20). A graphical idea of the proof is
depicted in Figure 2.2.

Figure 2.2: A graphical proof of Theorem 1. Lemma 1 ensures that ν(x) (in red) lays
in the brown area. Lemma 2 ensures that in B(p, r) the boundary belongs in the green
area. In conclusion, there exists a solution T of B-RMP, i.e. an intersection between the
boundary and the direction provided by the gradient.

Theorem 1 (MAP estimation). Let f be a binary classifier that satisfies the
Assumptions A, B, C. Close enough to the decision boundary, the solution of B-
MAP can be estimated by the solution of B-RMP through the following inequality.
Formally, for each ρ ∈ (

√
2, 2)

∀x ∈ Ωσ(ρ),
1

ρ
t(x) ≤ d(x) ≤ t(x), (2.13)

where the radius σ(ρ) = min{1−ρ/2
2
, ρ2 − 2)}Kf (Ωδ) and where Ωδ is a — large —

neighborhood of B in which ∇f(x) 6= 0.

Proof. Let α = ρ
2

and β = 1
2
ρ2 − 1. Let σ1(α) and σ2(β) be the radius deduced in

Lemmas 1 and 2, respectively, and let σ(ρ) = min(σ1(α), σ2(β)). Let p = π(x) ∈ B
a solution B-MAP, and let ϕ(t) = x + t ∇f(x)

‖∇f(x)‖ be the straight line starting from

x with direction ∇f(x). Without loss of generality, we can assume initially that
f(x) < 0. The proof strategy consists of proving that the straight line ϕ(t)
intersects the hyperplane R+ :=

{
p+ v : vT∇f(p) = βd(x)‖∇f(p)‖, v ∈ Rn

}
of

Observation 1 in some point ϕ(t∗), and that f(ϕ(t∗)) > 0. Note that, this ensures
the existence of some point ϕ(t(x)) ∈ B, i.e., the existence of a solution of B-RMP.
Observe that the intersection between the support of ϕ and R+ is realized for

t∗ =
‖∇f(x)‖

∇f(x)T∇f(p)

(
d(x)β‖∇f(p)‖ − (x− p)T∇f(p)

)
. (2.14)

Moreover, multiplying each term of Equation (2.12) in Observation 2 by ∇f(p)T ,
we deduce that (x− p)T∇f(p) = −r‖∇f(p)‖, from which, by substituting in the
second term of Equation (2.14), we deduce that

t∗ =
‖∇f(x)‖‖∇f(p)‖
∇f(x)T∇f(p)

(1 + β) d(x). (2.15)



2.1. DEFINITIONS AND THEORETICAL DISCUSSIONS 15

Furthermore, we are in the hypothesis of Lemma 1, and hence ‖∇f(x)‖‖∇f(p)‖
∇f(x)T∇f(p)

< 1
α

.

Hence, directly by Equation (2.15) we deduce the right-hand side of the following
inequality

t∗ <
1 + β

α
d(x) = ρd(x). (2.16)

In conclusion, by observing that x = ϕ(0), if we prove that f(ϕ(0)) < 0 < f(ϕ(t∗)),
we can deduce the existence of t(x) < t∗ such that f(ϕ(t(x))) = 0, which finally
implies left inequality of Equation (2.13). The right side of Equation (2.13) is
instead a direct consequence of the definition of t(x) and d(x). Finally, observe
that the case f(x) > 0 can be deduced by applying the same procedure to the
classifier −f .

Note that the tightest estimation of d(x, l) through t(x, l), achieved with ρ =√
2, results in a relative error lower than

ε̃ =
t(x)− d(x)

d(x)
<
√

2− 1 ≈ 0.414.

Finally, the aim of the following observation is to devise a notable value of ρ such
that the inequality holds for a large radius σ.

Observation 3 (Exploiting the largest σ). Let Ω = Ωδ of Theorem 1, and let ρ∗

obtained by solving 1
2
(1 − ρ/2) = ρ2 − 2. Then σ∗ = σ(ρ∗) is a notevolus large

radius for which Equation (2.13) holds.

Proof. Since, according to Theorem 1, σ(ρ) = min{1−ρ/2
2
, ρ2−2)}Kf (Ωδ), in order

to exploit the inequality in the largest possible radius, we can search for the value
of ρ such that

max√
2<ρ<2

σ(ρ).

The reader can check that the maximum is taken in ρ∗.

In conclusion, observe that ρ∗ ≈ 1.461, and that σ∗ ≈ 0.134 · Kf (Ωδ).

2.1.2 Does the error estimations apply to DNN?

The results stated in the previous section have been proved under the three as-
sumptions A,B,C that in general are not satisfied by a common feed-forward-neural
network (especially with a ReLU activation function). In detail, for a feed-forward
deep neural network, with a one-dimensional output, Assumption B is not verified
by f . However, being the samples of our interest always in some closed limited
set K, we can theoretically substitute f in the following proofs with another func-
tion f̃ that coincides with f in the compact K and that satisfies Assumption B.
Similarly, Assumptions A and C are not valid in general, but we can assume that,
in a practical domain, f is the quantization of a function f̃ that satisfies the
conditions.



16 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

2.2 Existing methods

This section discusses the most related papers on the problem of finding the mini-
mal adversarial perturbation, discussed in the Section 2.1. For the sake of clarity,
we group them into different categories depending on the approaches followed for
solving MAP.

2.2.1 Challenges in adversarial robustness

The literature related to adversarial robustness is quite vast. The problem of ad-
versarial perturbations for DNNs was first introduced by [1] and independently
by Szegedy et al. [2]. Since then, a large number of works followed for propos-
ing more powerful attacks [6], [7], [9], [10], [16], detection mechanisms [23], [24],
and defense strategies [25]–[27]. Most adversarial attacks use a gradient-based
approach to craft adversarial perturbations. Although they generate impressive
human undetectable adversarial examples, the reliability of the gradient direction
is often taken for granted and no bound was ever provided on the error committed,
with respect to the minimal theoretical perturbation.

Although many of the methods in the literature, provide an affordable empirical
solution to the minimal perturbation problem, two main aspects have to be taken
into account

Computational Cost Methods that accurately estimate the minimal adversar-
ial perturbation necessitate a substantial number of forward and backward passes
through the model. As will be discussed in subsequent sections, techniques uti-
lizing either a penalty minimum problem or a projection mechanism demand be-
tween 20 to 20,000 forward and backward passes. Therefore, implementing these
methods in an online scenario significantly increases overhead, reducing speed per-
formance by at least a factor of 20 to 50 times. However, it’s important to note
that these works are not intended for online applications.

Theoretical Support Various methods in the literature approach the computa-
tion of the minimal adversarial perturbation problem in diverse ways. Some meth-
ods are based on well-researched formulations of constrained minimum problems,
which, under specific assumptions about the model’s properties, have theoretical
foundations supporting the existence of a solution or convergence towards one.
On the other hand, other methods, though empirically more effective and reliable,
lack theoretical guarantees, making the existence of a solution and the conver-
gence towards it challenging to prove. In summary, according to our research,
there is no theoretical analysis that quantifies and limits the error incurred while
approximating the minimal adversarial perturbation.

2.2.2 Penalty-based methods

A well-known technique to solve a minimum constrained problem is given by the
Iterative Penalty (IP) [22]. For instance, [2] and [7] introduced a penalty term c
and solved the following minimization problem:

min
δ

c · ‖δ‖+ L(x+ δ, l) (2.17)



2.2. EXISTING METHODS 17

where the hyper-parameter c is selected through a line search. The rationale
of c is to balance the importance of the two terms in the cost function. The
second term L represents a specific loss function that is positive in the region Rl

and zero in ∪j 6=lRj. Carlini and Wagner analyzed different loss functions finding
that L(x, l) = (fl(x) − maxj 6=l fj(x))+ produces the most effective results, where
f+ = max{0, f}.

It is worth noting that in both works of [2] and [24], a box constraint is
added to achieve an adversarial perturbation that is feasible in the image do-
main. In particular, Szegedy et al. [2] exploited the Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno Box-constrained (L-BFGS-B) optimizer [22] to di-
rectly solve the minimum problem with the box-constraint 0 ≤ x + δ ≤ 1. The
Carlini and Wagner (CW) method instead, presented in [24], introduced a change-
of-variable to reduce to the solution of an unconstrained problem. Although both
the previous techniques allow crafting accurate perturbations, they turn out to
be expensive in terms of memory usage and computational cost. Moreover, the
optimization procedure must be repeated over multiple choices of the penalty c,
causing a large number of forward and backward network passes, thus resulting in
a slow convergence.

2.2.3 Toward the online computation of MAP

A key contribution towards less expensive solutions of MAP was given by the
Decoupling Direction Norm method (DDN) presented by [9], where the authors
avoid searching for the best value of the penalty term c. Instead, they search
for an adversarial example in the Euclidean ball centered in x with radius ε by
performing some gradient descent steps with the loss function used to train the
model and project the result on the sphere. Depending on whether the solution
is an adversarial example, they adjust the radius of the sphere and iterate the
procedure. Similarly, the method Fast Minimum Norm (FMN) proposed in [10],
a projection strategy suited also for different lp norms. Another approach, namely
Augmented Lagrangian Method for Adversarial attacks (ALMA) [11], uses the
same paradigm but avoids searching for the best penalty c through a line-search,
by exploiting the Lagrangian duality theory [28].

2.2.4 The deepfool method

Being the ideas presented in this chapter, strongly related to the findings and
the motivations behind the DeepFool method, we briefly review this strategy.
DeepFool (DF), [6], is a fast method for finding a minimal adversarial perturbation.
It leverages the explicit formulation of the Euclidean distance with respect to the
classification boundary in the linear case, to quickly generate accurate solutions
for MAP. In short, the method provides an approximate solution of MAP by
performing an iterative gradient-based algorithm with variable step size at each
iteration. To be compliant with the terminology used in Section 2.3, the problem
solved by DF can be rewritten by considering the minimal solution of a list of less



18 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

expensive minimum problems d(x, l) = minj 6=l dj(x), where dj(x, l):

dj(x, l) = min
δ
‖δ‖

s.t fl(x+ δ) ≤ fj(x+ δ).
(2.18)

The main idea consists of building a sequence x(1), x(2), . . . , x(k), . . . that converges
to an approximate solution of MAP, which lies in the adversarial region ∪j 6=lRj.

Given x(k), let f̃j(x) be the first order approximation of (fl(x) − fj(x)) in
x(k). Then, the next element of the sequence x(k+1) is obtained by considering
the minimal solution dj(x

(k), l) of Problem 2.18 applied to f̃j(x) rather than (fl−
fj)(x). Since f̃j is an affine function, the problem has an exact solution of the
form

x(k+1) = x(k) − f̃j(x
(k))

‖∇f̃j(x(k))‖
∇f̃j(x(k))

‖∇f̃j(x(k))‖
. (2.19)

Empirically speaking, the procedure reaches convergence in K ≈ 3 steps, resulting
in 2CK forward and backward passes, if applied to a classifier with C classes.
However, it is crucial to point out that, since the iteration is stopped when the
adversarial region is reached, there is no guarantee that the procedure will provide
a solution of MAP. Indeed, the procedure just ensures that a feasible perturbation
satisfying the constraint k̂(x+ δ) 6= l, is found. In other words, to the best of our
knowledge, there are no theoretical point-wise estimations of the approximation
error, but only estimations of the average distance from the classification boundary
[29].

2.2.5 The verification of DNNs

Verification methods aim at establishing whether, given a sample x and a bound
ε ≥ 0, each sample in the lp-ball centered in x with radius ε is classified with the
same class of x. Verification can be performed by solving the following problem

min cT z

s.t. ‖δ‖p ≤ ε

z = f(x+ δ)

, (VP)

where c depends on the statement we want to verify. For example, given a class
s other than the correct class l, we can determine the robustness of the sample x
targeted to the class s only by looking at the sign of the solution where c = el−es.
Precisely, if the solution of VP is positive, then the component zs of the output
score vector is lower than zl in the neighborhood of radius ε.

Nevertheless, as proved in [12], Problem VP is NP-complete for ReLU net-
works, and hence formal complete verification strategies are unfeasible for com-
monly large networks. Other works [13], [30]–[32] bound the inner network acti-
vations to relax the constraints and provide an incomplete verification. However,
being computationally expensive, these strategies do not scale to large networks
and can be applied to multi-layer-perceptrons only or relatively small convolu-
tional neural networks.



2.3. MAP VIA ROOT-FINDING ALGORITHMS 19

A different approach is given by [33], in which the authors search for the
largest hyper-rectangle Sε, centered in x and with semi-sides of length ε ∈ Rn

+,

such that k̂(x + δ) = l for each δ ∈ Sε(x). However, as in [13], solving such
a problem requires estimating the bounds of the internal activations so that the
method does not scale well to large networks. More scalable approaches have been
provided in [34], [35]. [34] leverage dual optimization theory, which enables the
verification of neural networks capable of accurately classifying images from the
MNIST and CIFAR10 datasets. Recently, Wang et al. [35] proposed β-CROWN,
which improves the computation of the inner activation bounds in the case of
ReLU activation by splitting the verification problem into two easier problems
based on the neuron outcome sign. Observe that the aforementioned strategies
are suited for l∞-bounded attacks and limit their analysis to ReLU activations
only.

A scalable verification method based on Cross Lipschitz Extreme Value for nEt-
work Robustness (CLEVER), is proposed by [36]. CLEVER considers l2-bounded
attacks and provides a lower bound βL of d(x, l) (as defined in Problem (MAP))
by evaluating the gradient of the network f on random samples in a neighbor-
hood of x. However, the thightness of the bound strongly depends on the number
of gradient evaluations: the higher the number of evaluations, the narrower the
bound. Hence, achieving accurate results requires a long computational time.

2.3 MAP via root-finding algorithms

This section proposes two strategies that provide an approximate solution to the
MAP problem by reducing it to the minimal root problem B-RMP presented
in the Section 2.1. Since the formulation of the problem B-RMP concerns only
the binary-classification case, in this section, we show how to reduce the multi-
class case to the solution of one or multiple B-RMP. In detail, for each (x, l),
a definition of t(x, l) as an approximation of d(x, l) will be given such that the
following inequalities hold

1

ρ
t(x, l) < d(x, l) < t(x, l). (2.20)

Nevertheless, observe that the the extension of the binary case to a multi-class
classifier is not unique, thus two methods will be proposed.

2.3.1 The closest boundary strategy

The Closest Boundary strategy (CB) leverages the idea that the minimum problem
related to a classifier with C classes can be reduced to a list of minimum problems
for binary classifiers. In detail, let x be a sample, correctly classified by f with
label l ∈ {1, . . . , C}, and let

dj(x, l) = min
δ
‖δ‖

s.t fl(x+ δ) ≤ fj(x+ δ).
(2.21)



20 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

Then, we observe that d(x, l) = minj 6=l dj(x, l), where d(x, l) solves MAP. This
can be proved by reformulating the statement with the following inequalities

min
j 6=l

dj(x, l) ≤ d(x, l) ≤ min
j 6=l

dj(x, l).

Let δ(j) be the solution of dj(x, l). The second inequality is a consequence from
the fact that δ(j) satisfies the constraint of MAP and that, by construction, d(x, l)
is lower than ‖δ‖ for each feasible δ. The first inequality, instead, can be proved
by observing that Problem MAP is equivalent to

d(x, l) = min
δ
‖δ‖

s.t fl(x+ δ) ≤ max
j 6=l

fj(x+ δ).
(2.22)

Hence, if δ∗ is the solution of Problem MAP and if j∗ ∈ argmaxj 6=l fj(x + δ∗),
then, by construction, δ∗ satisfies the constraint of Problem 2.21 for j∗, and so
minj 6=l dj(x, l) ≤ dj∗(x, l) ≤ d(x, l). In conclusion, if tj(x, l) is the solution of B-
RMP with f(x) = fl(x) − fj(x), then d(x, l) can be approximated by t(x, l) =
minj 6=l tj(x, l).

More informally, if Bjl := {p ∈ Rn : fl(x) = fj(x)} is the classification
boundary of the binary classifier fl − fj, we can reduce MAP to the problem
of finding the closest intersection between the boundary Bjl and the straight line
passing through x with the direction provided by the gradient of f . A good aspect
of this strategy is that it reduces to the solution of a sequence of minimum problems
by preserving the regularity of f , which indeed has a big impact on the accuracy of
the approximation as shown in Section 2.1. For the sake of clarity, the procedure
described above is summarized in Algorithm 1, where function Zero, called at
Line 7, is any root finding algorithm for univariate functions that solves B-RMP.

Algorithm 1: Pseudocode implementing the Closest Boundary strategy
depending on a root-finding algorithm.

Data: Zero !The root-finding algorithm.
Input: x, l, f !The safe sample and the DNN.
Output: t, ν !The distance and the direction

1 t = ∞;
2 for j = 1, . . . , c and j 6= l do
3 F (x) := fl(x)− fj(x);
4 grad = ∇F (x);
5 νj = -grad/‖grad‖;
6 g(t) := F (x+ t · νj);
7 tj= Zero(g);
8 if tj < t then
9 t = tj ;

10 ν = νj;

11 return t, ν;



2.3. MAP VIA ROOT-FINDING ALGORITHMS 21

2.3.2 Fast outer boundary strategy

The CB algorithm presented in the previous section can bring a large compu-
tational cost for a classifier f that distinguishes a large number of classes. In
fact, if Oj is the amount of forward and backward passes required to compute
each tj(x, l), then the total cost O can be estimated as

∑
j 6=lOj. The Fast Outer

Boundary strategy (FOB) is hence proposed here to contain the computational
cost. The minimum problem MAP can be reduced to the minimal root problem B-
RMP by considering L(x, l) = fl(x)−maxj 6=l fj(x) and observing that L acts like
a binary classifier that takes positive values in the region Rl and negative values
in the outer region ∪j 6=lRj. Hence, the approximation of d(x, l) can be deduced
by solving the minimal root problem obtained by substituting f with L in Prob-
lem B-RMP. Observe that, differently from the previous strategy, this one requires
the solution of a single minimal root problem. The pseudocode formulation of the
FOB strategy can easily be obtained as a variant of Algorithm 1 by replacing F
with L and removing the for loop.

2.3.3 Root-finding algorithms

Both strategies leverage two main observations: (i) the gradient of f suggests
the fastest direction to reach the adversarial region; and (ii) due to the objective
function, the minimal perturbation lays on the classification boundary. The two
considerations above naturally bring to searching the minimal perturbation as the
intersection between the classification boundary and the direction of the gradient
∇f , that directly brings to root-finding problem. In this work, the FOB and CB
methods are tested by solving the root problem B-RMP with a customized version
of the Bisection Algorithm and the vanilla Newton Algorithm, which return the
approximate distance t(x, l) for each sample (x, l). The bisection method has been
adapted to better fit the task. A more detailed illustration is provided below. In
general, the bisection method allows finding a zero of a scalar univariate continuous
function g : [a, b]→ R under the assumption that g(a) > 0 and g(b) < 0, without
requiring the computation of the derivative of g. Note that in our case a = 0
because in Problem B-RMP the variable t is positive.

Solving B-RMP requires finding the minimal positive root of the g function,
which, in general, is not a solution of the vanilla bisection algorithm. In fact, in
the searching interval [0, b], function g is not guaranteed to be monotone and it
can change sign, from positive to negative and vice-versa. To tackle this issue,
we apply a pre-processing to the initial searching interval [0, b] that is inspired by
Armijo rule for line search methods [22]. In detail, given a maximum number of

attempts R, we consider b̃ = b · 2−k̃, where

k̃ = max
{
i ∈ N : g(b · 2−i) < 0, i = 0, 1, · · · , R

}
(2.23)

and we start the bisection in [0, b̃]. The pseudocode that implements the Closest
Boundary strategy is shown in Algorithm 2. Line 20 reduces the number of forward
passes of the model by stopping the inner iteration if the lower bound t curr low

of the current label is higher than the actual overall minimal estimation t.



22 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

Algorithm 2: Pseudocode for bisection algorithm, with Armijo-like up-
per bound estimation, applied to the Closest Boundary strategy.

Data: t up, MaxIter, MaxAttempt
Input: x, l, f !The sample and the DNN
Output: t,ν !The distance and the direction

1 Tol = 5 · 10−5;
2 t = ∞;
3 for j = 1, . . . , c and j 6= l do
4 F (x) := fl(x)− fj(x);
5 grad = ∇F (x);
6 νj = −grad/‖grad‖;
7 !Starting of the bisection algorithm;
8 t curr low = 0;
9 t curr up = Armijo(g, b=t up);

10 for step = 1,. . . , MaxIter do
11 t curr = (t curr low + t curr up )/2;
12 x curr = x + t curr * νj;
13 out = F(x curr);
14 if out > 0 then
15 t low = t curr;
16 out low = o;

17 else
18 t up = t curr;
19 out up = o;

20 if t curr low > t then
21 Break !Reduce the amount of iterations;

22 if 0 > o up > -Tol then
23 Convergence;

24 if t up < t then
25 t = t up ;
26 ν = νj;

27 return t, ν;



2.4. EMPIRICAL RESULTS 23

Table 2.1: Summary of the most frequent symbols.

Symb. Dimensionality Meaning

f : Rn → RC(R) classifier (binary classifier)
d(x, l) ∈ R solution of MAP
t(x, l) ∈ R solution of B-RMP
B ⊆ Rn classification boundary (binary classif.)
Ωσ ⊆ Rn tubular neighborhood of B of radius σ
ρ ∈ R coefficient of Inequality 2.13

σ(ρ) ∈ R radius in which Inequality 2.13 holds.
Kf (Ω) ∈ R boundary proximity index
σ∗ ∈ R significant σ
σ̂∗ ∈ R empirical estimation of σ∗

2.3.4 Error estimation for multi-class classifiers

We conclude this section observing that, the theoretical analysis presented in Sec-
tion 2.1 can be extended to a multi-class classifier by leveraging the two method-
ologies presented in Section 2.3. If f : Rn → RC is a classifier with C classes, both
strategies reduce to a search for a solution of the minimal root problem B-RMP
for one or more binary classifiers in which the analysis can be applied.

The Fast-Outer-Boundary strategy presented in Section 2.3.2 consists in solv-
ing Problem B-RMP for a binary classifier of the form L(l) : Rn → R where
L(l)(x) := L(x, l) = fl(x)−maxj 6=l fj(x). Thus, by applying Theorem 1 to L(l), we
deduce the existence of a σ(l)(ρ) such that the estimation holds for each sample x
with k̂(x) = l. Therefore, by considering σ(ρ) = minl σ

(l)(ρ), we obtain a radius
for which the Equation (2.20) holds.

The Closest-Boundary strategy presented in Section 2.3.1 consists instead in
solving Problem B-RMP for a list of minimal root problems relative to binary
classifiers of the form fjl = fl−fj. In particular, for each ρ, Theorem 1 ensures the
existence of a neighborhood with radius σjl(ρ) such that the following inequalities
holds

1

ρ
tj(x, l) ≤ dj(x, l) ≤ tj(x, l),∀j,

where we keep the notation of Section 2.3.1. By taking the minimum over j 6= l we
deduce the estimation in Equation (2.20) for every x with k̂(x) = l and x ∈ Ωσl(ρ),
where σl(x) = minj 6=l σjl(ρ). In conclusion, by considering σ(ρ) = minl,j 6=l σjl(ρ),
we deduce an extension of the desired inequality for the multi-class case.

2.4 Empirical results

This section presents a set of experiments aimed at validating the strategies pro-
posed in Section 2.3. They are executed on four neural classifiers, each trained on
a different dataset. The approximate distances provided by the tested strategies
are compared in Section 2.4.3 with the Iterative Penalty method (Section 2.4.1),



24 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

in order to provide a ground-truth distance. Section 2.4.4 reports an empirical
estimation of σ for three noticeable values of ρ. Finally, Section 2.4.5 discusses
the case in which all the classifiers are attacked with different known methods.
The magnitude of each attack is bounded to be lower than t(x)/ρ∗ in order to
show that the attack success rate drops to about zero for samples in Ωσ̂∗ , where
σ̂∗ is an estimation of σ∗.

2.4.1 Groundtruth distance estimation

In order to compare the approximate distances that solve Equation (B-RMP), we
need an accurate measure of the theoretical distance d(x), which is practically
unknown in the general case. To tackle this problem, based on the ideas presented
in [37] and [7], we solve Equation (MAP) by reducing to the following minimum
problem with penalty analogous to Equation (2.17)

d(x, l; c) = min
δ∈Rn

‖δ‖+ c · L(x+ δ, l)+, (2.24)

where L(x, l) = fl(x) − maxj 6=l fj(x) and L+ = max{0, L}. For each sample
(x, l) and for each penalty value c, we perform a gradient descent with the Adam
optimizer [38], using the default parameters, up to 104 iterations, stopping the
procedure when −Tol < L(x(k), l) ≤ 0, where the tolerance Tol is set to 5 · 10−5.
Note that this convergence criterion ensures that the solution lies close to the
boundary and it is contained in the adversarial region ∪j 6=lRj. Similarly to [7], the
best penalty c is selected through a bisection-like search. In details, let clow = 0
and cup such that d(x, l; clow) = 0 and d(x, l; cup) does not converge for all the
samples x in the dataset. In our experiments, we discovered that cup = 100 is
large enough to satisfy this definition. Then, through successive bisections, we
can define ccurr = 1

2
(clow + cup) and either (i) set cup = ccurr (i.e., decreasing

cup) if the optimization for d(x, l; ccurr) does not converge, or (ii) set clow = ccurr
(i.e., increasing clow) if it converges. We stop the search for c after 12 bisections.
The whole procedure is implemented in batch mode to exploit GPU acceleration.
During the experiments, we noted that the Iterative Penalty (IP) method can
provide, for a few of the tested samples, an estimation of d(x) that is slightly higher
than other global methods, such as DeepFool (DF)[6] and Decoupling Direction
Norm (DDN) [9]. Thus, in order to adopt a more precise ground truth, we decided
to consider for each sample x the ground-truth distance d(x) as the minimum
distance obtained with IP, DF, and DDN.

2.4.2 Experimental Settings

The proposed techniques were evaluated on four different datasets, each associ-
ated with a different neural network. In the following, we use the name of the
dataset to refer to the experimental setting composed of the dataset itself and the
corresponding network.

MNIST

The MNIST handwritten digits dataset, introduced in [39], was used to train a
vanilla LeNet within a 2×2-MaxPool, 2 convolutional, and 3 fully connected layers,



2.4. EMPIRICAL RESULTS 25

achieving a 1% error rate on the test set. The training was performed without
data augmentation, using the Adam optimizer [38] (default hyper-parameters) to
minimize the Cross-Entropy Loss with a 128 batch size for 5 epochs.

Fashion MNIST

This dataset includes 50,000 training images and 10,000 test images (28 × 28
greyscale pixels) grouped in 10 classes [40]. Compared to MNIST, this dataset
is less trivial and requires finer tuning to craft a model with good accuracy. It
was used to train a vanilla LeNet with the same structure as the previous one.
The training was performed without data augmentation, by minimizing the Cross
Entropy loss with the Adam optimizer for 30 epochs (with a batch size of 128) to
achieve a 91% accuracy on the test set.

CIFAR10

This dataset contains 60,000 RGB images of size 32 × 32 pixels divided into 10
classes [41]. Inspired by [42], it was used to train a Resnet32 model [43] over
the first 50,000 images of the dataset with data augmentation, as described in
the original paper. In detail, the images were randomly cropped and horizontally
flipped. The training was performed by minimizing the Cross-Entropy loss for
182 epochs by the stochastic gradient descent with Nesterov momentum (SGD)
[44] with a starting learning rate of 0.1, momentum of 0.9, and a weight decay of
1e − 4. The learning rate was decreased using a multiplicative factor of 0.1 after
the 90th and the 135th epoch, achieving a 8.8% error rate over the test set. This
is in line with the original results of [42].

GTSRB

The German Traffic Sign Recognition Benchmark [45] contains about 51,000 traffic
signs RGB images of various shapes (from 15 × 15 to 250 × 250), grouped in 43
classes. It was used to train a MicronNet [46], a compact network similar to
LeNet that classifies pixel-wise standardized 48 × 48 images. The training was
performed over the first chunk of the dataset, containing ≈ 39,000 images with a
data augmentation technique. During training, each image was randomly rotated
by an angle in ±5◦, translated towards a random direction with magnitude lower
than 10%, and finally scaled with a factor between 0.9 and 1.1. Each transformed
image was then scaled to have a dimension of 48 pixels per side. The model was
trained to minimize the Cross Entropy loss by the SGD optimizer with a learning
rate of 7e− 3, a momentum of 0.8, and a weight decay of 1e− 5, for 100 epochs.
The learning rate was decreased every 10 epochs with a multiplicative factor of
0.9. We achieved a 1.2% error rate over the test set, which is comparable with the
state-of-the-art classification performance with this dataset.

2.4.3 Comparing distances

This section focuses on comparing the estimated distances to the ground-truth dis-
tance for the four network models and corresponding data sets. For each sample
(x, l), the approximate distances t(x, l) are obtained by applying the zero finding



26 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

algorithms (Bisection and Newton) to the strategies CB and FOB presented in
Section 2.3. The ground-truth distance d(x, l) is computed through the technique
presented in Section 2.4.1. Note that, in this section we only focus on the uncon-
strained formulation of the MAP (hence without box-constraint), since the aim is
to support the theoretical funding of Section 2.1.

Figure 2.3: Comparison of the approximate distance t(x, l), computed by the Bisection
CB strategy, and the ground-truth distance d(x, l), for the four models considered in
Section 2.4.2. Each dot represents the pair (d(x, l), t(x, l)) where x is a sample with
label l. The region between the green line (slope 1) and the other lines (slope

√
2, ρ∗, 2),

highlights the samples for which the Inequality 2.20 holds. Observe that, according to
the theoretical results, the closer the boundary (small d(x, l)) the higher the number of
dots in the region of interest.

Figure 2.3 shows a comparison between the approximate distance t(x, l), com-
puted by the Bisection CB strategy, and the ground-truth distance d(x, l) for the
four models considered in Section 2.4.2. For each sample x of label l, each dot in
a graph represents the pair (d(x, l), t(x, l)). The dashed green line with slope 1
represents the points in which d(x, l) = t(x, l). The other three lines have slopes√

2, ρ∗ and 2, where ρ∗ is defined in Observation 3, and represent Equation (2.20)
for different values of ρ. Observe that almost all the points close to the boundary
(i.e., those with a small ground-truth distance to the boundary) are located above
the green line and below the others, confirming that the estimation t(x) ≤ ρd(x)



2.4. EMPIRICAL RESULTS 27

MNIST FMNIST CIFAR10 GTSRB
Avg.Dist. # Evals Avg.Dist. # Evals Avg.Dist. # Evals Avg.Dist. # Evals

Strategy Algorithm

FOB Bisection 1.645 17 0.455 16 0.508 17 2.221 17
CB Bisection 1.467 17∗† 0.385 16∗† 0.483 17∗† 1.667 17∗†

FOB Newton 1.641 3 0.442 3 0.496 4 2.169 4
CB Newton 1.466 3∗ 0.385 3∗ 0.481 3∗ 1.668 3∗

DF 1.526 2∗ 0.318 3∗ 0.346 3∗ 1.516 3∗

DDN 1.287 1000 0.281 1000 0.338 1000 1.343 1000
IP 1.198 30162 0.261 32774 0.289 50609 1.262 34769
GT 1.172 - 0.255 - 0.283 - 1.204 -

∗ Average number of evaluations for each class of the datasets.
† Only one backward for each run. The remaining evaluations just

perform forwards of the model.

Table 2.2: Average distance from the boundary and average number of evaluations of
the models for the four datasets obtained with different methods. The behavior of the
tested methods for samples close to the boundary is detailed in Figure 2.4. Columns ’#
Evals’ report the number of times the method requires a forward and a backward pass
through the model.

MNIST FMNIST CIFAR10 GTSRB

n1 722 1198 849 576
n2 2200 1723 1311 1347
n3 3669 1767 1628 1696
n4 2184 1350 1636 1866
Tot. 8775 6038 5424 5485

Table 2.3: Summary of the number of samples in each interval for each dataset. The
MNIST and GTSRB are partitioned into intervals of length 0.5 from 0 to 2. The
FMNIST and CIFAR10 are partitioned into intervals of length 0.125 from 0 to 0.5.



28 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

holds.

Figure 2.4: Comparison of the distances computed by the Bisection CB strategy, Deep-
Fool, Decoupling Direction Norm (DDN), and Iterative Penalty with respect to the
ground-truth distance. For a clearer representation, the ground-truth distance is par-
titioned into four intervals that contain a number of samples summarized in Table 2.3.
For each method, the lower and the upper side of each box represent the first and the
fourth quartile Q1 and Q2, respectively; the lower and the upper whisker represent the
quantiles Q1−1.5 · Iq and Q3 + 1.5 · Iq, respectively, where Iq is the interquartile range.

Table 2.2 reports the average distances from the boundary for each dataset
and for each tested strategy and the average number of evaluations for a timing
comparison. The statistics are computed over all the samples in the test set that
satisfy the following conditions:

(i) the sample is correctly predicted by the model;

(ii) the algorithms reach the convergence;

(iii) the ground-truth distance is lower than 2.0 for MNIST and GTSRB, and
lower than 0.5 for FMNIST and CIFAR10 (threshold values were selected to
include a large part of the test set while still focusing on the region close to
the boundary).

The amount of tested samples is detailed in Table 2.3. As one may expect, DF,
DDN and Iterative Penalty (IP) provide lower distances with respect to our strate-



2.4. EMPIRICAL RESULTS 29

MNIST FMNIST CIFAR10 GTSRB
ρ Algo. Strategy
√

2 B FOB 0.34 0.06 0.04 0.15
CB 0.37 0.06 0.13 0.58

N FOB 0.34 0.06 0.04 0.15
CB 0.37 0.01 0.00 0.58

ρ∗ B FOB 0.37 0.06 0.04 0.15
CB 0.59 0.08 0.13 0.58

N FOB 0.37 0.06 0.04 0.15
CB 0.59 0.01 0.00 0.58

2 B FOB 0.37 0.12 0.11 0.49
CB 0.72 0.12 0.17 0.87

N FOB 0.37 0.12 0.11 0.49
CB 0.72 0.01 0.00 0.87

Table 2.4: Comparison of all the σ̂ estimated by the different techniques.

gies CB and FOB. However, the distances computed by CB and FOB are associ-
ated with a bound on the approximation error relative to the theoretical distance
d(x). The boxplot in Figure 2.4 provides a comparison of the approximate dis-
tances computed by the Bisection method applied to the CB strategy, DeepFool,
IP, and DDN. The ground truth distance reported on the x-axis is partitioned,
differently for each dataset, into four intervals, whose dimensions are summarized
in Table 2.3. Again, note that for points near the boundary, our method provides
an accurate estimation of d, whereas, far from the boundary, global techniques re-
sult in being more accurate, returning a better approximation of the ground-truth
distance.

2.4.4 Empirical estimation of the tubular neighborhood

Theoretically, Theorem 1 ensures that for each ρ ∈ (
√

2, 2) there exists a σ(ρ)
for which Inequality (2.20) holds. In practice, however, for an arbitrary classifier
f , such a σ(ρ) cannot be deduced explicitly. Nevertheless, we can empirically
estimate its value. In particular, given a data set X , we can define σ̂(ρ), an
estimation of σ(ρ), as follows:

σ̂(ρ) = min

{
d(x, l) :

t(x, l)

d(x, l)
> ρ, (x, l) ∈ X

}
, (2.25)

which corresponds to the maximum distance for which Inequality (2.20) holds for
the samples in X .

Table 2.4 reports different estimations of σ for different values of ρ, in accor-
dance with Section 2.4.3. For each ρ, the estimation σ̂(ρ) is deduced on a subset of
the testset built by randomly sampling 60% of the images. Observe that the values
of σ provided by CB are larger than or equal to those provided by FOB. In terms
of algorithms, the customized bisection algorithm (augmented with the Armijo-
like rule) provides more reliable results with respect to the Newton method. We



30 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

believe this is due to the fact that there is no guarantee that the Newton algorithm
provides the smallest positive zero of the function. As the theoretical value of σ
(that depends on the boundary proximity index), also the empirical estimations
can be seen as well as a measure of the regularity of the models: the higher σ̂,
the higher the regularity of the model (or the boundary). Also, observe that these
results are in line with Table 2.2, in which the model for FMNIST has an average
distance that is lower than the one of the LeNet for MNIST (on which the im-
ages have the same dimension and have been normalized with the same mean and
standard deviation).

2.4.5 Adversarial robustness in the tubular neighborhood

This section evaluates the goodness of the empirical estimation σ̂∗ of the theoretical
σ∗ (defined in Observation 3) to assess the model robustness against adversarial
examples bounded in magnitude by t(x)/ρ∗. In formulas, let x̃ = Advε(x, l) an
adversarial example crafted with an unknown attack technique Advε that for each
sample (x, l) provides a new sample x̃ (if exists) such that k̂(x) 6= l and ‖x̃−x‖ ≤ ε.
We want to empirically show that{

x ∈ Ωσ∗ : ∃Advε(x, k̂(x); ε), ε <
t(x)

ρ∗

}
= ∅. (2.26)

In other words, we empirically assess that for each sample distant from the bound-
ary less than σ̂∗, there are no adversarial perturbations with a magnitude smaller
than t(x, l)/ρ∗. For this purpose, we only test the approximation t(x) provided by
the CB strategy with the bisection method. In fact, higher values of σ̂ represent
a worst case to be tested, since there are more samples with a distance lower than
σ̂. By using FoolBox [47], we generated adversarial examples for the four datasets
with the following techniques: Decoupling Norm Direction (DDN) [9], Deep Fool
(DF) [6], Projected Gradient Descent (PGD) [16], Fast Gradient Method (FGM)
[47]. For each dataset X , and for each sample (x, l) ∈ X , we considered the
clipped output of FoolBox that is guaranteed to have magnitude lower than ε,
i.e. ‖x̃− x‖ < ε. Observe that in this test the magnitude of the attack ε is never
computed by using the ground-truth distance d(x, l), but by setting ε = t(x, l)/ρ∗.

The results of this experiment for the four datasets are shown in Figure 2.5,
in which each graph reports the number of adversarial examples found with mag-
nitude t(x)/ρ∗ as a function of the ground-truth distance d(x, l). In detail, each
stepped line reports, as a function of d, the cardinality of the set{

(x, l) ∈ X : ∃Advε(x, l), ε =
t(x)

ρ∗
, d(x, l) ≤ d

}
rescaled to be one for the maximum value of d, i.e., the fraction of points that are
out of the bound for the tested attack. All graphs show that the higher d, the
higher the number of samples that escape the bounds (a sample escapes the bounds
if t(x, l)/ρ∗ is higher than the real distance from the boundary). In each plot, the
values of σ̂∗ computed in Table 2.4 are represented by the dashed red lines. It is
important to observe that the estimation of σ̂∗ was deduced as explained in the
previous section, i.e., by applying Equation (2.25) without knowing the results of
the attacks in advance.



2.4. EMPIRICAL RESULTS 31

Figure 2.5: Attack success rate cumulative curve for attacks bounded in magnitude less
than t(x)/ρ∗ obtained with Bisection method and Closest Boundary strategy. The
dashed red line represent σ̂∗, which approximates σ∗ of Theorem 1. For MNIST and
GTSRB, none of the samples with a distance from the boundary lower than σ̂∗ can be
perturbed by the tested bounded attacks, in accordance with the theoretical results.
For the FMNIST and the CIFAR10 dataset, instead, the estimation σ̂∗ results to be
less accurate, failing in a tiny portion of the tested samples (3 and 5 samples overall
respectively).

The result of this test shows that the two datasets FMNIST and CIFAR10
have a different behavior with respect to MNIST and GTSRB. In particular, for
MNIST and GTSRB, the estimation of σ∗ is more selective, meaning that the
estimation done by Inequality (2.20) holds for distances slightly larger than σ̂∗.
Moreover, for FMNIST and CIFAR10 datasets, the estimation of σ∗ results to be
less accurate, and for a few samples (1 sample for each dataset) the attacks succeed
even if the ground truth distance is lower than σ̂, proving that the estimation in
Inequality 2.20 does not hold in a neighborhood of radius σ̂∗ at least for one
example.

2.4.6 Comparison with CLEVER

This section compares the estimation t(x, l)/ρ∗, obtained by the bisection method
with the CB strategy, with the lower bound βL obtained by CLEVER implemented



32 CHAPTER 2. MINIMAL ADVERSARIAL PERTURBATION

by IBM in [48]. Note that both CLEVER and the CB strategy can provide
estimates of different quality depending on the number of evaluations of the model.
To fairly compare the quality of the results provided by the two methods, it is hence
required to bound the maximum number of evaluations that they perform. In our
experiments, this bound was set to 20, which was empirically selected by observing
that the CB strategy requires only one gradient evaluation and (on average) at
most 17 forward passes per class to converge. Note that the recommended amount
of gradient evaluations of CLEVER is 500 ∗ 1024, which is clearly far from the
bound we imposed. It is also worth remembering that, for a given sample, the
Bisection method with CB strategy only performs one gradient evaluation at the
first step (for each class), while all the following steps of the algorithm only require
a forward pass of the model (and no gradient computations).

Avg Failures [%] Evals [#] #{d≤ σ̂∗}
t/ρ∗ βL t/ρ∗ βL t/ρ∗ βL

Dataset

MNIST 0.27 0.35 0.21 32.27 14.73 20.00 970
FMNIST 0.03 0.04 0.14 42.66 16.10 20.00 715
CIFAR10 0.05 0.07 0.12 48.94 17.04 20.00 852
GTSRB 0.28 0.39 0.54 66.58 15.40 20.00 745

Table 2.5: Comparison between the lower bound t/ρ∗ and βL of CLEVER. Only samples
with ground truth distance lower than σ̂∗ for each dataset are considered. Columns
”Failures[%]” summarize the percentage of samples for which the estimated lower bounds
are not lower than the ground-truth.

Table 2.5 provides a close comparison between the two lower bounds t(x, l)/ρ∗

and βL. The metric named ”Failure [%]” represents the percentage of samples for
which the expected lower bounds are higher than d(x, l). The metric named ”Eval
[#]” counts the mean number of evaluations of the models for each class. Observe
that, for all the datasets, the amount of failures of the CB strategy is much lower
than the one of CLEVER (βL). To consider only the scenarios supported by our
theoretical analysis from Section 2.1, only samples with a ground-truth distance
lower than the corresponding empirical lower bound σ̂∗ are considered.



Chapter 3
1-Lipschitz Deep Neural Networks

As introduced in the Chapter 2, modern artificial neural networks achieve high
accuracy and sometimes superhuman performance in many different tasks, but
it is widely recognized that they are not robust to tiny and imperceptible input
perturbations [1], [2] that, if properly crafted, can cause a model to produce the
wrong output. Such inputs, known as Adversarial Examples, represent a serious
concern for the deployment of machine learning models in safety-critical systems
[49]. For this reason, the scientific community is pushing towards guarantees of

Figure 3.1: Evaluation of 1-Lipschitz methods on different metrics. Scores are assigned from 1
(worst) to 5 (best) to every method based on the results reported in Sections 3.2 and 3.4.

robustness. Recently, in the context of image classification, various approaches
have been proposed to achieve certifiable robustness, including Verification, Ran-
domized Smoothing, and Lipschitz bounded Neural Networks.

Verification strategies, that have been deepened in the Chapter 2, aim to es-
tablish, for any given model, whether all samples contained in a l2-ball with radius
ε and centered in the tested input x are classified with the same class as x. In
the exact formulation, verification strategies involve the solution of an NP-hard
problem [12]. Nevertheless, even in a relaxed formulation, [13], these strategies
require a huge computational effort [36].

Randomized Smoothing (RS), initially presented in [50], represent an effective
way of crafting a certifiable-robust classifier g based on a base classifier f . If

33



34 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

combined with an additional denoising step, they can achieve state-of-the-art levels
of robustness, [51]. However, since they require multiple evaluations of the base
model (up to 100k evaluations) for the classification of a single input, they cannot
be used for real-time applications.

Finally, Lipschitz Bounded Neural Networks represent a valid alternative to
produce certifiable classifiers, since they only require a single forward pass of
the model at inference time [18], [52]–[57]. Indeed, the difference between the
two largest output components of the model directly provides a lower-bound,
in Euclidean norm, of the minimal adversarial perturbation capable of fooling
the model. Lipschitz-bounded neural networks can be obtained by the composi-
tion of 1-Lipschitz layers [58]. The process of parameterizing 1-Lipschitz layers
is fairly straightforward for fully connected layers. However, for convolutions —
with overlapping kernels — deducing an effective parameterization is a hard prob-
lem. Indeed, the Lipschitz condition can be essentially thought of as a condition
on the Jacobian of the layer. However, the Jacobian matrix can not be efficiently
computed.

In order to avoid the explicit computation of the Jacobian, various methods
have been proposed, including parameterizations that cause the Jacobian to be
(very close to) orthogonal [55], [56], [59], [60] and methods that rely on an upper
bound on the Jacobian instead [54]. Those different methods differ drastically in
training and validation requirements (in particular time and memory) as well as
empirical performance. Furthermore, increasing training time or model sizes very
often also increases the empirical performance. This makes it hard to judge from
the existing literature which methods are the most promising. This becomes even
worse when working with specific computation requirements, such as restrictions
on the available memory. In this case, it is important to choose the method that
better suits the characteristics of the system in terms of evaluation time, memory
usage as well and certifiable-robust-accuracy.

This chapter aims at giving a comprehensive comparison of different strategies
for crafting 1-Lipschitz layers from both a theoretical and practical perspective.
For the sake of fairness, we consider several metrics such as Time and Memory
requirements for both training and inference, Accuracy, as well as Certified Robust
Accuracy. The main contributions are the following:

• An empirical comparison of 1-Lipschitz layers based on six different met-
rics, and three different datasets on four architecture sizes with three time
constraints.

• A theoretical comparison of the runtime complexity and the memory usage
of existing methods.

3.1 1-Lipschitz Layers

In recent years, various methods have been proposed for creating artificial neural
networks with a bounded Lipschitz constant. The lipschitz constant of a function



3.1. 1-LIPSCHITZ LAYERS 35

f : Rn → Rm with respect to the l2 norm is the smallest L such that for all
x, y ∈ Rn

‖f(x)− f(y)‖2 ≤ L‖x− y‖2. (3.1)

This definition can be extended to networks and layers, by considering the l2 norms
of the flattened input and output tensors in Equation (3.1). A layer is called 1-
Lipschitz if its Lipschitz constant is at most 1. For linear layers, the Lipschitz
constant is equal to the spectral norm of the weight matrix that is given as

‖M‖ = sup
v 6=0

‖Mv‖2

‖v‖2

. (3.2)

A particular class of linear 1-Lipschitz layers are ones with an orthogonal Jacobian
matrix. The Jacobian matrix of a layer is the matrix of partial derivatives of the
flattened outputs with respect to the flattened inputs. A matrix M is orthogonal if
MM> = I, where I is the identity matrix. For layers with an orthogonal Jacobian,
Equation (3.1) always holds with equality and, because of this, a lot of methods
aim at constructing such 1-Lipschitz layers.

The analysis of this chapter has been conducted by considering neural networks
composed of 1-Lipschitz parameterized layers and 1-Lipschitz activation functions,
with no skip connections and no batch normalization. Even though the com-
monly used ReLU activation function is 1-Lipschitz, Anil et al. [58] showed that
it reduces the expressive capability of the model. Hence, we adopt the MaxMin
activation proposed by the authors and commonly used in 1-Lipschitz models.
Concatenations of 1-Lipschitz functions are 1-Lipschitz, so the networks analyzed
are 1-Lipschitz by construction.

3.1.1 Spectral norm and orthogonal projection

Many recently proposed methods rely on a way of parameterizing orthogonal ma-
trices or parameterizing matrices with bounded spectral norm. In this section, we
discuss the fundamental methods for estimating the spectral norms of linear and
convolutional layers, i.e. Power Method [61] and Fantistic4 [62], and for crafting
orthogonal matrices, i.e. Bjorck & Bowie [63], in Section 3.1.1.

Bjorck & Bowie [63] introduced an iterative algorithm that finds the closest
orthogonal matrix to the given input matrix. In the commonly used form, this is
achieved by computing a sequence of matrices using

Ak+1 = Ak

(
I +

1

2
Qk

)
, for Qk = I − A>k Ak (3.3)

where A0 = A, is the input matrix. The algorithm is usually truncated after a fixed
number of steps, during training often 3 iterations are enough, and for inference
more (e.g. 15) iterations are used to ensure a good approximation. Since the
algorithm is differentiable, it can be applied to construct 1-Lipschitz networks as
proposed initially in [58] or also as an auxiliary method for more complex strategies
[55].



36 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

Power Method The power method was used in [61], [57] and [64] in order to
bound the spectral norm of matrices.

It starts with a random initialized vector u0, and iteratively applies the fol-
lowing:

vk+1 =
W>uk
‖W>uk‖2

, uk+1 =
Wvk+1

‖Wvk+1‖2

. (3.4)

Then the sequence σk converges to the spectral norm of W , for σk given by

σk = u>kWvk. (3.5)

This procedure allows us to obtain the spectral norm of matrices, but it can also
be efficiently extended to find the spectral norm of the Jacobian of convolutional
layers. This was done for example by [57], [65], using the fact that the transpose
of a convolution operation (required to calculate Equation (3.4)) is a convolution
as well, with a kernel that can be constructed from the original one by transposing
the channel dimensions and flipping the spatial dimensions of the kernel. When
the power method is used on a parameter matrix of a layer, we can make it
even more efficient with a simple trick. We usually expect the parameter matrix
to change only slightly during each training step, so we can store the result uk
during each training step, and start the power method with this vector as u0

during the following training step. With this trick, it is enough to do a single
iteration of the power method at each training step. The power method is usually
not differentiated through.

Fantasic Four proposed, in [62], allows upper bounding of the Lipschitz con-
stant of a convolution. The given bound is generally not tight, so using the method
directly does not give good results. Nevertheless, since various methods require
a way of bounding the spectral norm to have convergence guarantees, Fantastic
Four is often used.

3.1.2 Parameterized 1-Lipschitz Layers

This section provides an overview of the existing methods for providing 1-Lipschitz
layers. This section describes methods in the literature that construct 1-Lipschitz
convolutions: BCOP, Cayley, SOC, AOL, LOT, CPL, SLL, ONI, ECO, Sandwich.
Nevertheless, some of them have not been compared, i.e., ECO, Sandwich, ONI
proposed in [66]–[68] respectively. The reasons why they were not included in the
main comparison are discussed in each dedicated paragraph.

BCOP Block Convolution Orthogonal Parameterization (BCOP) was introduced
by Li et al. in [55] to extend a previous work by Xiao et al. [69] that focused on
the importance of orthogonal initialization of the weights. For a k×k convolution,
BCOP uses a set of (2k − 1) parameter matrices. Each of these matrices is or-
thogonalized using the algorithm by Bjorck & Bowie [63] (see also Section 3.1.1).
Then, a k × k kernel is constructed from those matrices to guarantee that the
resulting layer is orthogonal.



3.1. 1-LIPSCHITZ LAYERS 37

Cayley Another family of orthogonal convolutional and fully connected layers
has been proposed by Trockman and Kolter [56] by leveraging the Cayley Trans-
form [70], which maps a skew-symmetric matrix A into an orthogonal matrix Q
using the relation

Q = (I − A)(I + A)−1. (3.6)

The transformation can be used to parameterize orthogonal weight matrices for lin-
ear layers in a straightforward way. For convolutions, the authors make use of the
fact that circular padded convolutions are vector-matrix products in the Fourier
domain. As long as all those vector-matrix products have orthogonal matrices,
the full convolution will have an orthogonal Jacobian. For Cayley Convolutions,
those matrices are orthogonalized using the Cayley transform.

SOC Skew Orthogonal Convolution (SOC) is an orthogonal convolutional layer
presented by Singla et al. [59], obtained by leveraging the exponential convolution
[71]. Analogously to the matrix case, given a kernel L ∈ Rc×c×k×k, the exponential
convolution can be defined as

exp(L)(x) := x+
L ? x

1
+
L ?2 x

2!
+ · · ·+ L ?k x

k!
+ · · · , (3.7)

where ?k denotes a convolution applied k-times. The authors proved that any
exponential convolution has an orthogonal Jacobian matrix as long as L is skew-
symmetric, providing a way of parameterizing 1-Lipschitz layers. In their work,
the sum of the infinite series is approximated by computing only the first 5 terms
during training and the first 12 terms during the inference, and L is normalized
to have unitary spectral norm following the method presented in [62] (see Sec-
tion 3.1.1).

AOL Prach and Lampert [54] introduced Almost Orthogonal Layer (AOL) lay-
ers. For any matrix P , they defined a diagonal rescaling matrix D with

Dii =
(∑

j

∣∣P>P ∣∣
ij

)−1/2

(3.8)

and proved that the spectral norm of PD is bounded by 1. This result was used to
show that the linear layer given by l(x) = PDx+b (where P is the learnable matrix
and D is given by eq. (3.8)) is 1-Lipschitz. Furthermore, the authors extended
the idea so that it can also be efficiently applied to convolutions. This is done by
calculating the rescaling in Equation (3.8) with the Jacobian J of a convolution
instead of P . In order to evaluate it efficiently the authors express the elements
of J>J explicitly in terms of the kernel values.

LOT The layer presented by Xu et al. [60] extends the idea of [68] to use the
Inverse Square Root of a matrix in order to orthogonalize it. Indeed, for any
matrix V , the matrix Q = V (V TV )−

1
2 is orthogonal. Similarly to the Cayley

method, for the layer-wise orthogonal training (LOT) the convolution is applied
in the Fourier frequency domain. To find the inverse square root, the authors rely
on an iterative Newton Method. In details, defining Y0 = V TV , Z0 = I, and

Yi+1 =
1

2
Yi (3I − ZiYi) , Zi+1 =

1

2
(3I − ZiYi)Zi, (3.9)



38 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

it can be shown that Yi converges to (V TV )−
1
2 . In their proposed layer, the authors

apply 10 iterations of the method for both training and evaluation.

CPL Meunier et al. [64] proposed the Convex Potential Layer. Given a non-
decreasing 1-Lipschitz function σ (usually ReLU), the layer is constructed as

l(x) = x− 2

‖W‖2
2

W>σ(Wx+ b), (3.10)

which is 1-Lipschitz by design. The spectral norm required to calculate l(x) is
approximated using the Power Method (see Section 3.1.1).

SLL The SDP-based Lipschitz Layers (SLL) proposed by Araujo et al. [72] com-
bine the CPL layer with the upper bound on the spectral norm from AOL. The
layer can be written as

l(x) = x− 2WQ−2D2σ
(
W>x+ b

)
, (3.11)

where Q is a learnable diagonal matrix with positive entries and D is deduced by
applying Equation (3.8) to P = WQ−1.

Remark 1. Both CPL and SLL are non-linear by construction, so they can be
used to construct a network without any further use of activation functions. How-
ever, carrying out some preliminary experiments, we empirically found that alter-
nating CPL (and SLL) layers with MaxMin activation layers allows for achieving
a better performance.

3.1.3 1-Lipschitz excluded from the comparison

In this section an overview of three methods in the literature is given, [66]–[68].

ONI The method proposed by Huanget al., Orthogonalization using Newton’s
Iteration (ONI), [68] relies on an orthogonalization strategy similar to the proce-
dure used in LOT. Parameterization of orthogonal matrices is done by considering
(V V >)−

1
2V , where the inverse square root is obtained through Newton’s iterations.

However, the extension to convolutions only uses a simple unrolling and does not
provide a tight bound of the Lipschitz constant of the layer. Therefore, we did
not provide a comparison of this method.

ECO Explicitly Constructed Orthogonal (ECO) convolutions [66] also do use
properties of the Fourier domain in order to parameterize a convolution. However,
they do not actually calculate the convolution in the Fourier domain, but instead
parameterize a layer in the Fourier domain, and then use an inverse Fourier trans-
formation to obtain a kernel from this parameterization. Nevertheless, we omitted
the layer from the comparison since we noticed that the implementation provided
by the authors does not produce 1-Lipschitz layers with our architecture.



3.2. THEORETICAL COMPARISON 39

Sandwich Sandwich layer is introduced by Wang and Manchester, [67], and is
defined as follows

l(x) =
√

2ATΨ ReLU
(√

2Ψ−1Bx+ b
)
. (3.12)

The authors propose a (simultaneous) parameterization of A and B, based on the
Cayley Transform, that guarantees the whole layer to be 1-Lipschitz. They also
extend the idea to convolutions. However, for this, they are required to apply
two Fourier transformations as well as two inverse ones. During the training of
Sandwich we faced some numerical errors. To investigate such errors, we tested a
lighter version of the method — without the learnable rescaling Ψ — for the reason
described in Remark 2, which shows that the rescaling Ψ inside the layer can be
embedded into the bias term and hence the product ΨΨ−1 can be omitted. Fur-
thermore, during the training of the models within the Sandwich layers, a severe
vanishing gradient phenomenon happens. Therefore, the layer is not compared
with the other tested methods.

Remark 2. The learnable parameter Ψ of the sandwich layer corresponds to a
scaling of the bias. In details, for each parameters A,B, b and Ψ = diag

(
edi
)

there

exists a rescaling of the bias b̃ such that

l(x) =
√

2ATΨReLU
(√

2Ψ−1Bx+ b
)

=
√

2ATReLU
(√

2Bx+ b̃
)

(3.13)

Proof. Observing that for each α > 0 and x ∈ R, ReLU (αx) = αReLU (x), and
that

∀x ∈ Rn, Ψ−1x =

e
−d1x1

...
e−dnxn

 ,
the following identity holds

l(x) =
√

2ATΨReLU
(√

2Ψ−1Bx+ b
)

=
√

2ATΨReLU
(√

2Ψ−1
(√

2Bx+ Ψb
))

=
√

2ATΨΨ−1ReLU
(√

2Bx+ Ψb
)

=
√

2ATReLU
(√

2Bx+ Ψb
)
.

(3.14)

Considering b̃ = Ψb concludes the proof.

3.2 Theoretical Comparison

As illustrated in the last section, various ideas and methods have been proposed
to parameterize 1-Lipschitz layers. This causes the different methods to have
very different properties and requirements. This section aims at highlighting the
properties of the different algorithms, focusing on the algorithmic complexity and
the required memory.



40 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

Table 3.1 provides an overview of the computational complexity and memory
requirements for the different layers considered in the previous section. For the
sake of clarity, the analysis is performed by considering separately the transfor-
mations applied to the input of the layers and those applied to the weights to
ensure the 1-Lipschitz constraint. Each of the two sides of the table contains
three columns: i) Operations contains the most costly transformations applied to
the input as well as to the parameters of different layers; ii) MACS reports the
computational complexity expressed in multiply-accumulate operations (MACS)
involved in the transformations (only leading terms are presented); iii) Memory
reports the memory required by the transformation during the training phase.

Method Input Transformations Parameter Transformations
Operations MACS O(·) Memory Operations MACS O(·) Memory O(·)

Standard CONV C M - - P
AOL CONV C M CONV c3k4 5P
BCOP CONV C M BnB & MMs c3kt+ c3k3 c2kt+ c2k3

Cayley FFTs & MVs bs2c2 5
2
M FFTs & INVs s2c3 3

2
s2c2

CPL CONVs & ACT 2C 3M power method s2c2k2 P + s2c
LOT FFTs & MVs bs2c2 3M FFTs & MMs 4s2c3t 4s2c2t
SLL CONVs & ACT 2C 3M CONVs c3k4 5P
SOC CONVs Ct1 Mt1 F4 c2k2t2 P

Table 3.1: Computational complexity and memory requirements of different methods.
We report multiply-accumulate operations (MACS) as well as memory requirements (per layer)
for batch size b, image size s × s × c, kernel size k × k and number of inner iterations t. We
use C = bs2c2k2, M = bs2c and P = c2k2. For a detailed explanation of what is reported see
Section 3.2.

At training time, both input and weight transformations are required, thus
the training complexity of the forward pass can be computed as the sum of the
two corresponding MACS columns of the table. Similarly, the training mem-
ory requirements can be computed as the sum of the two corresponding Memory
columns of the table. For the considered operations, the cost of the backward
pass during training has the same computational complexity as the forward pass,
and therefore increases the overall complexity by a constant factor. At inference
time, all the parameter transformations can be computed just once and cached
afterward. Therefore, the inference complexity is equal to the complexity due to
the input transformation (column 3 in the table). The memory requirements at
inference time are much lower than those needed at the training time since inter-
mediate activation values do not need to be stored in memory, hence we do not
report them in Table 3.1.

Note that all the terms reported in Table 3.1 depend on the batch size b,
the input size s × s × c, the number of inner iterations of a method t, and the
kernel size k × k. (Often, t is different at training and inference time.) For the
sake of clarity, the MACS of a naive convolution implementation is denoted by
C (C = bs2c2k2), the number of inputs of a layer is denoted by M (M = bs2c),
and the size of the kernel of a standard convolution is denoted by P (P = c2k2).
Only the leading terms of the computations are reported in Table 3.1. In order to
simplify some terms, we assume that c > log2(s) and that rescaling a tensor (by



3.2. THEORETICAL COMPARISON 41

a scalar) as well as adding two tensors does not require any memory in order to
do backpropagation. We also assume that each additional activation does require
extra memory. All these assumptions have been verified to hold within PyTorch,
[73]. Also, when the algorithm described in the paper and the version provided in
the supplied code differed, we considered the algorithm implemented in the code.

The transformations reported in the table are convolutions (CONV), Fast
Fourier Transformations (FFT), matrix-vector multiplications (MV), matrix-matrix
multiplications (MM), matrix inversions (INV), as well as applications of an ac-
tivation function (ACT). The application of algorithms such as Bjorck & Bowie
(BnB), power method, and Fantastic 4 (F4) is also reported (see Section 3.1.1 for
descriptions).

3.2.1 Analysis of the computational complexity

It is worth noting that the complexity of the input transformations (in Table 3.1) is
similar for all methods. This implies that a similar scaling behavior is expected at
inference time for the models. Cayley and LOT apply an FFT-based convolution
and have computational complexity independent of the kernel size. CPL and SLL
require two convolutions, which makes them slightly more expensive at inference
time. Notably, SOC requires multiple convolutions, making this method more
expensive at inference time.

At training time, parameter transformations need to be applied in addition
to the input transformations during every forward pass. For SOC and CPL, the
input transformations always dominate the parameter transformations in terms
of computational complexity. This means the complexity scales like c2, just like
a regular convolution, with a further factor of 2 and 5 respectively. All other
methods require parameter transformations that scale like c3, making them more
expensive for larger architectures. In particular, we do expect Cayley and LOT
to require long training times for larger models since the complexity of their pa-
rameter transformations further depends on the input size.

3.2.2 Analysis of the training memory requirements

The memory requirements of the different layers are important since they deter-
mine the maximum batch size and the type of models we can train on a particular
infrastructure. At training time, typically all intermediate results are kept in
memory to perform backpropagation. This includes intermediate results for both
input and parameter transformations. The input transformation usually preserves
the size, and therefore the memory required is usually of O(M). Therefore, for
the input transformations, all methods require memory not more than a constant
factor worse than standard convolutions, with the worst method being SOC, with
a constant t1, typically equal to 5.

In addition to the input transformation, we also need to store the interme-
diate results of the parameter transformations in memory to evaluate the gradi-
ents. Again, most methods approximately preserve the sizes during the parameter



42 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

transformations, and therefore the memory required is usually of order O(P ). Ex-
ceptions to this rule are Cayley and LOT, which contain a much larger O(s2c2)
term, as well as BCOP.

3.3 Methodology

This section presents the methodology adopted for comparing the performance of
the considered layers concerning different metrics. To have a fair and meaningful
comparison among the various models, all the proposed layers have been evaluated
using the same architecture, loss function, and optimizer. Since, according to the
data reported in Table 3.1, different layers may have different throughput, to have
a fair comparison for the tested metrics, we limited the total training time instead
of fixing the number of training epochs. Results are reported for training times of
2h, 10h, and 24h on one A100 GPU.

3.3.1 Architecture

Our architecture is a standard convolutional network that doubles the number of
channels whenever the resolution is reduced [18], [56]. For each method, we tested
architectures of different sizes. We denoted them as XS, S, M and L, depending on
the number of parameters, according to the criteria in Table 3.4, ranging from 1.5M
to 100M parameters. The architecture used for the experiments is summarized in
Tables 3.2 and 3.3. It is a standard convolutional architecture, that doubles the
number of channels whenever the resolution is reduced.

Layer name Output size

Input 32× 32× 3
Zero Channel Padding 32× 32× w
Conv (1× 1 kernel size) 32× 32× w
Activation 32× 32× w
Downsize Block(k) 16× 16× 2w
Downsize Block(k) 8× 8× 4w
Downsize Block(k) 4× 4× 8w
Downsize Block(k) 2× 2× 16w
Downsize Block(1) 1× 1× 32w
Flatten 32w
Linear 32w
First Channels(c) c

Table 3.2: Architecture. It depends on width parameter w, kernel size k (k ∈ {1, 3}) and the
number of classes c. For details of the Downsize Block see table 3.3.

Note that we exclusively use convolutions with the same input and output
size as an attempt to make the model less dependent on the initialization used
by the convolutional layers. We use kernel size 3 in all our main experiments.
The layer Zero Channel Padding in Table 3.2 just appends channels with value



3.3. METHODOLOGY 43

Layer name Kernel size Output size

5×
{ Conv k × k s× s× t

Activation - s× s× t
First Channels - s× s× t/2
Pixel Unshuffle - s/2× s/2× 2t

Table 3.3: Downsize Block(k) with input size s× s× t:

Size Parameters (millions) w

XS 1 < p < 2 16
S 4 < p < 8 32
M 16 < p < 32 64
L 64 < p < 128 128

Table 3.4: Number of parameters for different model sizes, as well as the width parameter w
such that the architecture in table 3.2 has the correct size.

0 to the input, and the layer First Channels(c) outputs only the first c channels,
and ignores the rest. Finally, the layer Pixel Unshuffle (implemented in PyTorch)
takes each 2×2×c patches of an image and reshapes them into size 1×1×4c. For
each 1-Lipschitz layer, we also test architectures of different sizes. In particular,
we define 4 categories of models based on the number of parameters. We call those
categories XS, S, M and L. See Table 3.4 for the exact numbers. In this table we
also report the width parameter w that ensures our architecture has the correct
number of parameters.

Remark 3. For most methods, the number of parameters per layer are about the
same. There are two exceptions, BCOP and Sandwich. BCOP parameterizes the
convolution kernel with c input channels and c output channels using a matrix
of size c × c and 2(k − 1) matrices of size c × c/2. Therefore, the number of
parameters of a convolution using BCOP is kc2, less than the k2c2 parameters of
a plain convolution. The Sandwich layer has about twice as many parameters as
the other layers for the same width, as it parameterizes two weight matrices, A
and B in Equation (3.12), per layer.

3.3.2 Training

Since one of the main goals is to evaluate what is the best model to use given a
certain time budget, we measure the time per epoch as described in Section 3.3.5
on an A100 GPU with 80GB memory for different methods and different model
sizes. Then we estimate the number of epochs we can do in our chosen time
budget of either 2h, 10h or 24h, and use that many epochs to train our models.
The amount of epochs corresponding to the given time budget is summarized in
Table 3.5. Being the goal metric is certified robust accuracy for perturbation of



44 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

CIFAR-10&100 TinyImageNet
XS S M L XS S M L

AOL 837 763 367 83 223 213 123 34
BCOP 127 125 94 24 50 50 39 11
CPL 836 797 522 194 240 194 148 63
Cayley 356 214 70 17 138 86 30 8
ECO 399 387 290 162 142 131 95 54
LOT 222 68 11 - 83 29 5 -
SLL 735 703 353 79 242 194 118 32
SOC 371 336 201 77 122 87 63 27

Param.s (M)† 1.57 6.28 25.12 100.46 1.58 6.29 25.16 100.63

† BCOP has less parameters overall, see Remark 3.

Table 3.5: Budget of training epochs for different model sizes, layer types and datasets. Batch
size and training time are set to be 256 and 2h respectively for all the architectures.

maximal size ε = 36/255, we use the loss function proposed by [54], where the
margin parameter is set to 2

√
2ε, and the temperature parameter is set to t = 1/4.

This allows aiming at the robustness of maximal size 2ε during training. We use
SGD with a momentum of 0.9 for all experiments.We considered the learning rate
scheduler OneCycleLR, as described by [74], with default values as in PyTorch.
We set the batch size to 256 for all experiments.

3.3.3 Random search of hyperparameter

Since different methods benefit from different learning rates and weight decay, for
each setting (model size, method and dataset), we used the best values resulting
from a random search performed on multiple training runs on a validation set
composed of 10% of the original training set. More specifically, we did 16 runs
with learning-rate of the form 10x, where x is sampled uniformly in the interval
[−4,−1], and with a weight decay of the form 10x, where x is sampled uniformly in
the interval [−5.5,−3.5]. Finally, we selected the learning rate and weight decay
corresponding to the run with the highest validation certified robust accuracy for
radius 36/255. We use these hyperparameters found also for the experiments with
longer training time. Each run is performed by training the setting (model size,
method and dataset) and the sampled learning rate and weight decay for 2h. The
number of epochs is summarized in Table 3.5.

3.3.4 Datasets

We evaluate on three different datasets, CIFAR-10, CIFAR-100 [41] and Tiny
ImageNet [75]. For CIFAR-10 and CIFAR-100 we use the architecture described
in Table 3.2. Since the architectures are identical, so are time- and memory
requirements, and therefore also the epoch budget. As preprocessing we subtract
the dataset channel means from each image. As data augmentation at training
time we apply random crops (4 pixels) and random flipping. In order to assess
the behavior on larger images, we replicate the evaluation on the Tiny ImageNet



3.4. EXPERIMENTAL RESULTS 45

dataset [75]: a subset of 200 classes of the ImageNet [19] dataset, with images
scaled to have size 64×64. In order to allow for the larger input size of this dataset,
we add one additional Downsize Block to our model. We also divide the width
parameter (given in Table 3.4) by 2 to keep the amount of parameters similar. We
again subtract the channel mean for each image. As data augmentation we we us
RandAugment [76] with 2 transformations of magnitude 9 (out of 31).

3.3.5 Metrics

All the considered models were evaluated based on three main metrics: the through-
put, the required memory, and the certified robust accuracy.

Throughput and epoch time The throughput of a model is the average num-
ber of samples that the model can process per second. It determines how many
epochs are processed in a given time frame. The evaluation of the throughput is
performed on an NVIDIA A100 80GB PCIe GPU ∗. based on the average time of
100 mini-batches. We measured the inference throughput with cached parameter
transformations.

Memory required Layers that require less memory allow for larger batch size,
and the memory requirements also determine the type of hardware we can train
a model on. For each model, we measured and reported the maximal GPU mem-
ory occupied by tensors using the function max memory allocated provided by
the PyTorch framework. This is not exactly equal to the overall GPU memory
requirement but gives a fairly good approximation of it. Note that the model
memory measured in this way also includes additional memory required by the
optimizer (e.g. to store the momentum term) as well as by the activation layers
in the forward pass. However, this additional memory should be at most of or-
der O(M + P ). As for the throughput, we evaluated and cached all calculations
independent of the input at inference time.

Certified robust accuracy In order to evaluate the performance of a 1-Lipschitz
network, the standard metric is the certified robust accuracy. An input is clas-
sified certifiably robustly with radius ε by a model, if no perturbations of the
input with norm bounded by ε can change the prediction of the model. Cer-
tified robust accuracy measures the proportion of examples that are classified
correctly as well as certifiably robustly. For 1-Lipschitz models, a lower bound of
the certified ε-robust accuracy is the ratio of correctly classified inputs such that
Mf (xi, li) > ε

√
2 where the margin Mf (x, l) of a model f at input x with label

l, given as Mf (x, l) = f(x)l −maxj 6=l fj(x), is the difference between target class
score and the highest score of a different class. For details, see [77].

3.4 Experimental Results

This section presents the results of the comparison performed by applying the
methodology discussed in Section 3.3. The results related to the different metrics

∗NIVIDA A100 80GB PCIe GPU product brief

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/PB-10577-001_v02.pdf


46 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

are discussed in dedicated subsections and the key takeaways are summarized in
the radar-plot illustrated in Figure 3.1.

3.4.1 Training and inference times

Figure 3.2 plots the training time per epoch of the different models as a function
of their size, while Figure 3.3 plots the corresponding inference throughput for the
various sizes as described in Section 3.3. As described in Table 3.2, the model base
width, referred to as w, is doubled from one model size to the next. We expect
the training and inference time to scale with w similarly to how individual layers
scale with their number of channels, c (in Table 3.1). This is because the width of
each of the 5 blocks of our architecture is a constant multiple of the base width,
w.

The training time increases (at most) about linearly with w for standard con-
volutions, whereas the computational complexity of each single convolution scales
like c2. This suggests that parallelism on the GPU and the overhead from other
operations (activations, parameter updates, etc.) are important factors deter-
mining the training time. This also explains why CPL (doing two convolutions,

XS S M L
Model Size

7.5 sec
15 sec
30 sec
1 min
2 min
4 min
8 min

Ti
m

e

Training time per epoch
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

Figure 3.2: Training time per epoch (on CIFAR-10) for different methods and different model
sizes.

with identical kernel parameters) is only slightly slower than a standard convo-
lution, and SOC (doing 5 convolutions) is only about 3 times slower than the
standard convolution. The AOL and SLL methods also require times comparable
to a standard convolution for small models, although eventually, the c3 term in
the computation of the rescaling makes them slower for larger models. Finally,
Cayley, LOT, and BCOP methods take much longer training times per epoch. For
Cayley and LOT this behavior was expected, as they have a large O(s2c3) term
in their computational complexity. See Table 3.1 for further details.

At inference time transformations of the weights are cached, therefore some
methods (AOL, BCOP) do not have any overhead compared to a standard convo-
lution. As expected, other methods (CPL, SLL, and SOC) that apply additional



3.4. EXPERIMENTAL RESULTS 47

XS S M L
Model Size

29

210

211

212

213

214

215

Th
ro

ug
hp

ut
 (e

xa
m

pl
es

/s
)

Inference Throughput per second
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

Figure 3.3: Inference throughput for different methods as a function of their size for CIFAR-10
sizes input images. All parameter transformations have been evaluated and cached beforehand

convolutions to the input suffer from a corresponding overhead. Finally, Cayley
and LOT have a slightly different throughput due to their FFT-based convolution.
Among them, Cayley is about twice as fast because it involves a real-valued FFT
rather than a complex-valued one. From Figure 3.3, it can be noted that cached
Cayley and CPL have the same inference time, even though CPL uses twice the
number of convolutions. We believe this is due to the fact that the conventional
FFT-based convolution is quite efficient for large filters, but PyTorch implements
a faster algorithm, i.e., Winograd, [78], that can be up to 2.5 times faster.

3.4.2 Training memory requirements

The training and inference memory requirements of the various models (measured
as described in Section 3.3.5) are reported in Figure 3.4 as a function of the model
size. The results of the theoretical analysis reported in Table 3.1 suggest that
the training memory requirements always have a term linear in the number of
channels, c (usually the activations from the forward pass), as well as a term
quadratic in c (usually the weights and all transformations applied to the weights
during the forward pass). This behavior can also be observed from Figure 3.4.
For some of the models, the memory required approximately doubles from one
model size to the next one, just like the width. This means that the linear term
dominates (for those sizes), which makes those models relatively cheap to scale
up.

For the BCOP, LOT, and Cayley methods, the larger coefficients in the c2 term
(for LOT and Cayley the coefficient is even dependent on the input size, s2) cause
this term to dominate. This makes it much harder to scale those methods to more
parameters. Method LOT requires huge amounts of memory, in particular LOT-L
is too large to fit in 80GB GPU memory. Note that at test time, the memory
requirements are much lower, because the intermediate activation values do not
need to be stored, as there is no backward pass. Therefore, at inference time, most
methods require a very similar amount of memory as a standard convolution. The
Cayley and LOT methods require more memory since perform the calculation



48 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

XS S M L
Model Size

1 GB
2 GB
4 GB
8 GB

16 GB
32 GB
64 GB

M
em

or
y 

(G
B)

Memory required training
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

XS S M L
Model Size

125 MB

250 MB

500 MB

1 GB

2 GB

4 GB

M
em

or
y

Memory required inference
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC
Standard

Figure 3.4: Memory required at training and inference time for input size 32× 32.

in the Fourier space, as they create an intermediate representation of the weight
matrices of size O(s2c2).

3.4.3 Certified robust accuracy

The results related to the accuracy and the certified robust accuracy for the dif-
ferent methods, model sizes, and datasets measured on a 24h training budget are
summarized in Table 3.6. The differences among the various model sizes are also
highlighted in Figure 3.5 by reporting the sorted values of the certified robust
accuracy. The reader can compare our results with the state-of-the-art certified
robust accuracy summarized in Table 3.7. However, it is worth noting that, to
reach state-of-the-art performance, authors often carry out experiments using large
model sizes and long training times, which makes it hard to compare the meth-
ods themselves. On the other hand, the evaluation proposed in this paper allows
a fairer comparison among the different methods, since it also considers timing
and memory aspects. This restriction based on time, rather than the number of
epochs, ensures that merely enlarging the model size does not lead to improved
performance, as bigger models typically process fewer epochs of data. Indeed, in
our results in Figure 3.5 it is usually the M (and not the L) model that performs
best. To assign a score that combines the performance of the methods over all
the three datasets, we sum the number of times that each method is ranked in



3.4. EXPERIMENTAL RESULTS 49

Accuracy [%] Robust Accuracy [%]
Methods XS S M L XS S M L

CIFAR-10

AOL 71.7 73.6 73.4 73.7 59.1 60.8 61.0 61.5
BCOP 71.7 73.1 74.0 74.6 58.5 59.3 60.5 61.5
CPL 74.9 76.1 76.6 76.8 62.5 64.2 65.1 65.2
Cayley 73.1 74.2 74.4 73.6 59.5 61.1 61.0 60.1
LOT 75.5 76.6 72.0 - 63.4 64.6 58.7 -
SLL 73.7 74.2 75.3 74.3 61.0 62.0 62.8 62.3
SOC 74.1 75.0 76.9 76.9 61.3 62.9 66.3 65.4

CIFAR-100

AOL 40.3 43.4 44.3 41.9 27.9 31.0 31.4 29.7
BCOP 41.4 42.8 43.7 42.2 28.4 30.1 31.2 29.2
CPL 42.3 - 45.2 44.3 30.1 - 33.2 32.1
Cayley 42.3 43.9 43.5 42.9 29.2 30.5 30.5 29.5
LOT 43.5 45.2 42.8 - 30.8 32.5 29.6 -
SLL 41.4 42.8 42.4 42.1 28.9 30.5 29.9 29.6
SOC 43.1 45.2 47.3 46.2 30.6 32.6 34.9 33.5

Tiny ImageNet

AOL 26.6 29.3 30.3 30.0 18.1 19.7 21.0 20.6
BCOP 22.4 26.2 27.6 27.0 13.8 16.9 17.2 16.8
CPL 28.3 29.3 29.8 30.3 18.9 19.7 20.3 20.1
Cayley 27.8 29.6 30.1 27.2 17.9 19.5 19.3 16.7
LOT 30.7 32.5 28.8 - 20.8 21.9 18.1 -
SLL 25.1 27.0 26.5 27.9 16.6 18.4 17.7 18.8
SOC 28.9 28.8 32.1 32.1 18.9 18.8 21.2 21.1

Table 3.6: Certified robust accuracy for radius ε = 36/255 on the evaluated datasets. Training
is performed for 24 hours.

the first position, in the top-3, and top-10 positions. In this way, top-1 methods
are counted three times, and top-3 methods are counted twice. The scores in the
radar-plot shown in Figure 3.1 are based on those values.

Among all methods, SOC achieved a top-1 robust accuracy twice and a top-
3 one 6 times, outperforming all the other methods. CPL ranks twice in the
top-3 and 9 times in the top-10 positions, showing that it generally has a more
stable performance compared with other methods. LOT achieved the best certified
robust accuracy on Tiny ImageNet, appearing further 5 times in the top-10. AOL
did not perform very well on CIFAR-10, but reached more competitive results on
Tiny ImageNet, ending up in the top-10 a total of 5. An opposite effect can be
observed for SLL, which performed reasonably well on CIFAR-10, but not so well
on the two datasets with more classes, placing in the top-10 only once. This result
is tied with BCOP, which also has only one model in the top-10. Finally, Cayley



50 CHAPTER 3. 1-LIPSCHITZ DEEP NEURAL NETWORKS

Model
52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

SO
C 

- M

SO
C 

- L

CP
L 

- L

CP
L 

- M

LO
T 

- S

CP
L 

- S

LO
T 

- X
S

SO
C 

- S

SL
L 

- M

CP
L 

- X
S

SL
L 

- L

SL
L 

- S

AO
L 

- L

BC
OP

 - 
L

SO
C 

- X
S

Ca
yl

ey
 - 

S

SL
L 

- X
S

Ca
yl

ey
 - 

M

AO
L 

- M

AO
L 

- S

BC
OP

 - 
M

Ca
yl

ey
 - 

L

Ca
yl

ey
 - 

XS

BC
OP

 - 
S

AO
L 

- X
S

LO
T 

- M

BC
OP

 - 
XS

Robust Accuracy for CIFAR10
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model
28

30

32

34

36

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

SO
C 

- M

SO
C 

- L

CP
L 

- M

SO
C 

- S

LO
T 

- S

CP
L 

- L

AO
L 

- M

BC
OP

 - 
M

AO
L 

- S

LO
T 

- X
S

SO
C 

- X
S

Ca
yl

ey
 - 

S

SL
L 

- S

Ca
yl

ey
 - 

M

BC
OP

 - 
S

CP
L 

- X
S

SL
L 

- M

AO
L 

- L

SL
L 

- L

LO
T 

- M

Ca
yl

ey
 - 

L

Ca
yl

ey
 - 

XS

BC
OP

 - 
L

SL
L 

- X
S

BC
OP

 - 
XS

AO
L 

- X
S

Robust Accuracy for CIFAR100
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Model

18

19

20

21

22

Ro
bu

st
 A

cc
ur

ac
y 

[%
]

LO
T 

- S

SO
C 

- M

SO
C 

- L

AO
L 

- M

LO
T 

- X
S

AO
L 

- L

CP
L 

- M

CP
L 

- L

CP
L 

- S

AO
L 

- S

Ca
yl

ey
 - 

S

Ca
yl

ey
 - 

M

SO
C 

- X
S

CP
L 

- X
S

SL
L 

- L

SO
C 

- S

SL
L 

- S

LO
T 

- M

AO
L 

- X
S

Ca
yl

ey
 - 

XS

SL
L 

- M

BC
OP

 - 
M

Robust Accuracy for TinyImageNet
AOL
BCOP
CPL
Cayley
LOT
SLL
SOC

Figure 3.5: Certified robust accuracy by decreasing order. Note that the axes do not start at 0.

Certifiable Accuracy [%]
Method Std.Acc [%] ε = 36

255
ε = 72

255
Parameters

BCOP Large [55] 72.1 58.2 - 2M
Cayley KW-Large [56] 75.3 59.1 - 2M
SOC LipNet-25 [59] 76.4 61.9 - 24M
AOL Large [54] 71.6 64.0 56.4 136M
LOT LipNet-25 [60] 76.8 64.4 49.8 27M
SOC LipNet-15 + CRC [79] 79.4 67.0 52.6 21M
CPL XL [64, Table1] 78.5 64.4 48.0 236M
SLL X-Large [72] 73.3 65.8 58.4 236M

Table 3.7: SOTA from the literature on CIFAR-10 sorted by publication date (from older
to newer). Readers can note that there is a clear trend of increasing the model dimension to
achieve higher robust accuracy.

is consistently outperformed by the other methods. The very same analysis can be
applied to the clean accuracy, where the main difference is that Cayley performs
slightly better for that metric. Furthermore, it is worth highlighting that CPL is
sensitive to weight initialization. We faced numerical errors during the 10h and
24h training of the small model on CIFAR-100.



Chapter 4
Signed Distance Classifiers

As introduced in the previous chapters, In the last few years, a large number of
methods for crafting adversarial examples have been presented [5], [6], [9], [16]. In
particular, [7], [9] proposed methods to find the minimal adversarial perturbation
(MAP) or, equivalently, the closest adversarial example for a given input x.

Figure 4.1: An example of a binary SDC. Observe that the countour lines are parallel-curves
of the classification boundary (the black curve) and the output of the model in a x (the orange
cross) directly provides the distance from the closest point in the classification boundary (the
blue cross).

Such a perturbation directly provides the distance of x from the classification
boundary, which, given a maximum magnitude of perturbation, can be used to
verify the trustworthiness of the prediction [36] and design robust classifiers [50],
[80]. Note that, when the MAP is known, one can check on-line whether a certain
input x can be perturbed with a bounded-magnitude perturbation to change the
classification result. If this is the case, the network itself can signal the unsafeness
of the result. Unfortunately, due the hard complexity of the algorithms for solving

51



52 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

the MAP problem on classic models, the aforementioned strategies are not suited
for efficiently certifying the robustness of classifiers [14]. To achieve provable guar-
antees, other works focused on designing network models with bounded Lipschitz
constant that, by construction, offers a lower bound of the MAP as the network
output. These particular models can be obtained by composing orthogonal layers
[53], [55], [56], [59], [81] and norm-preserving activation functions, such as those
presented by [58], [82]. However, despite the satisfaction of the Lipschitz inequal-
ity, these models do not provide the exact boundary distance but only a lower
bound.

This chapter introduces a new family of classifiers, namely Signed Distance
Classifier (SDC), that straighten the Lipschitz lower bound by outputting the exact
distance of an input x from the classification boundary. SDC can then solve the
MAP problem as a result of the network inference (see Figure 4.1). From a theoret-
ical point of view, we extend the characterization property of the signed distance
functions to a multi-class classifier. From a practical perspective, we address such
a theoretical model by presenting a new architecture, named Unitary-Gradient
Neural Network (UGNN), having unitary gradient (under the Euclidean norm) in
each differentiable point. In summary, this chapter provides the following contri-
butions:

• It introduces a notable family of classifiers, named SDC, which provide as
output the distance of an input x from the classification boundary.

• It provides a novel network architecture, named UGNN, which, to the best
of our knowledge, represents the first practical approximation of an SDC.

• It shows that the abs function can replace other more expensive norm-
preserving activation functions without introducing a significant accuracy
loss. Furthermore, it proposes a new layer named Unitary Pair Difference,
which is a generalization of a fully connected orthogonal layer.

• It assesses the performance, advantages, and limitations of the proposed
architecture through a close comparison with the state-of-the-art models in
the field of the Lipschitz-Bounded Neural Networks.

Structure: After a discussion of the related work, we provide a definition and a
characterization of the SDCs by first introducing the concept for a binary classifier
and then extending it to a multi-class classifier, where a characterization property
is discussed. Then, we propose the UGNN to practically address the required
properties of an SDC. Finally, we discuss a set of experiments to evaluate UGNNs
and discuss future works.

4.1 Related works

The evaluation and the provable verification of the robustness of a classification
model can be addressed by computing the MAP in a given point x [83]. Since that
computation involves solving a minimum problem with non-linear constraints, the
community focused on designing faster algorithms to provide an accurate estima-
tion of the distance to the classification boundary [9]–[11]. However, all these



4.2. SIGNED DISTANCE CLASSIFIER 53

algorithms require multiple forward and backward steps, and hence are not suited
for an online application [14].

On the other side, since the sensitiveness to input perturbations strictly de-
pends on the Lipschitz constant of the model, knowing the local Lipschitz constant
in a neighborhood of x provides a lower bound of the MAP in x [84]. In formu-
las, for a L-Lipschitz neural network f , a lower bound of MAP is deduced by
considering 1

L
√

2
(fl(x)−fs(x)), where l, s are the first and the second top-2 compo-

nents, respectively. However, for common DNNs, obtaining a precise estimation of
L is still computationally expensive [85], thus also this strategy is not suited for an
online application. For these reasons, recently, other works focused on developing
neural networks with a bounded Lipschitz constant, as thoroughly discussed in the
Chapter 3 Similarly, [81] considered neural networks f in which each component
fi is 1-Lipschitz, thus, differently from the 1-Lipschitz networks mentioned before,
given a sample x, the lower bound of MAP is deduced by 1

2
(fl(x)− fs(x)).

Other authors leveraged orthogonal weight matrices to pursue the same ob-
jective. For instance, [86] showed that a ReLU Multi-Layer Perceptron merely
composed of orthogonal layers is 1-Lipschitz. Indeed, an orthogonal matrix W
(i.e. such that WW T = I or W TW = I) has a unitary spectral norm, ‖W‖ = 1.
Roughly speaking, orthogonal fully connected and convolutional layers can be
obtained by Regularization or Parameterization. The former methods include a
regularization term in the training loss function to encourage the orthogonality of
the layers, e.g., [53] use β‖W TW − Id‖2. The latter methods, instead, consider a
parameterization of the weight W (θ) depending on an unconstrained parameter θ
so that, for each θ, W (θ) is an orthogonal weight matrix [56], [58]. For convolu-
tional layers, a regularization strategy can be applied, since they can be written
as matrix-vector product through a structured matrix [87]. However, recent pa-
rameterized strategies as BCOP [55], CayleyConv [56], and Skew Convolution
[59] come out as efficient and performant alternatives. Nevertheless, more details
about these strategies are provided in the last chapter of the thesis.

Differently from the aforementioned methods, this chapter defines an SDC, as
a function f that provides the MAP by computing fl(x)− fs(x), thus tightening
the lower bounds provided by L-Lipschitz classifiers. Furthermore, we present the
UGNN, designed by properly leveraging the previous orthogonal parameterized
strategies, as the first architecture that approximates a theoretical SDC.

4.2 Signed Distance Classifier

In this context, a classifier k̂ : X → Y maps the input domain into a finite set of
labels Y . The concept of robustness is formally stated in the following definition.

Definition 3 (robustness). A classifier k̂ is ε-robust in an input x ∈ Rn (or equiv-
alently, a classification k̂(x) is ε-robust), if k̂(x+ δ) = k̂(x) for any perturbation
δ with ‖δ‖ < ε, where ‖ · ‖ is the Euclidean norm.



54 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

4.2.1 The case of a binary classifier

Let f : Rn → R be a binary classifier that provides a classification of an input x
based on its sign, i.e., k̂(x) = sgn(f(x)), and let Bf := {x ∈ Rn : f(x) = 0} be
the classification boundary of f . Given an input sample x, the MAP problem for
a binary classifier is defined as follows:

df (x) := inf
p∈Rn

‖p− x‖

s.t. f(p) = 0,
(4.1)

where df represents the distance function from the boundary Bf . The closest
adversarial example to x is defined as the unique x∗ (if any) such that df (x) =
‖x − x∗‖ and sgn(f(x)) 6= sgn(f(x∗)). Observe that Problem (4.1) is equivalent
to the definition of Minimal Adversarial Perturbation in [6].

Certifiable robustness. We refer to δ∗ = x∗−x as the perturbation that realizes
the MAP. By definition of df (x), for each perturbation δ with ‖δ‖ < df (x) it holds

k̂(x+ δ) = k̂(x); hence, k̂ is certifiable df (x)-robust in x.

A Signed Distance Function d∗f is defined as follows:

d∗f (x) =

{
df (x) x ∈ R+

−df (x) x 6∈ R+.
(4.2)

where R+ = {f > 0}. Following this definition, a signed distance function d∗f
satisfies intriguing properties that make it highly interesting for robustness evalu-
ation, verification, and certifiable prediction. In particular, d∗f provides the same
classification of f , since sgn(d∗f (x)) = sgn(f(x)) for each x ∈ Rn. Furthermore,
the gradient ∇d∗f (x) coincides with the direction of the shortest path to reach the
closest adversarial example to x [88, Thm. 4.8].

Observation 1. Let x ∈ Rn, if there exists a unique x∗ ∈ Bf such that df (x) =
‖x− x∗‖, then d∗f is differentiable in x such that

∇df (x) =
x− x∗

‖x− x∗‖
, (4.3)

and hence has a gradient with unitary Euclidean norm, i.e., ‖∇d∗f (x)‖ = 1, referred
to as unitary gradient (UG) for short in the following. Furthermore, d∗f is such
that:

1. It provides a trivial way to certify the robustness of k̂ in x, since, by defini-
tion, |d∗f (x)| represents the MAP.

2. It explicitly provides the closest adversarial example to x, which can be
computed x∗ = x− d∗f (x)∇d∗f (x).

Proof. Refer to [88, Thm. 4.8]

Inspired by these intriguing properties, this work aims at investigating classi-
fiers whose output provides the distance (with sign) from their own classification
boundary.



4.2. SIGNED DISTANCE CLASSIFIER 55

4.2.2 A characterization property

A trivial example of a binary classifier f that coincides with a signed distance
function is given by any affine function with a unitary weight. Indeed, if f(x) =
wTx + b, where ‖w‖ = 1, then the MAP relative to f has the explicit unique

solution of the form x∗ = x − f(x)
‖w‖2w, as already pointed out in [6], from which

df (x) = |f(x)|. As shown in Observation 1, a signed distance function has a
unitary gradient. Under certain hypotheses, the opposite implication holds: a
function f with a unitary gradient coincides with a signed distance function from
Bf . For the sake of clear comprehension, before providing the proof, let us remem-
ber some classical results. The following theorems are known as Existence and
Uniqueness of Solutions of Ordinary Differential Equations (ODE) and Implicit
Function Theorem.

Lemma 3 (Existence and Uniqueness of ODE solutions). Let U ⊆ Rn be an open
subset of Rn, and let F : U → Rn a smooth function, i.e., F ∈ C∞(U), then the
following statements hold.

i) For each t0 ∈ R and x0 ∈ U , there exists I0 ⊆ R and U0 ⊆ U open sets,
with (t0, x0) ∈ I0 × U0, such that for each x ∈ U0 there exists a solution
ux : I0 → U of the following Cauchy-problem{

u̇(t) = F (u(t))

u(0) = x;
(4.4)

where we keep the notation ux to highlight that x is the starting point of the
solution of Problem 4.4.

ii) The map Θ : I0 × U0 ⊆ U , namely flux, defined by Θ(t, x) := ux(t), is in
C∞;

iii) If ux, vx are two solutions of Equation (4.4), then ux ≡ vx;

Proof. Refer to [89, pp.66-88].

The second classical result useful during the proof of the Theorem is the Im-
plicit Function Theorem.

Lemma 4 (Implicit Function Theorem (Dini)). Let G : R× U → R be a smooth
function defined on an open set R× U . If p ∈ U is such that

G(0, p) = 0 and
dG

dt
(0, p) 6= 0,

then there exists an open set Ω ⊆ U and a smooth function ϕ : Ω→ R such that

∀x ∈ Ω, G(ϕ(x), x) = 0. (4.5)

Proof. The proof can be deduced by [89, Thm. 5.9], where V := R, U := U ,
U0 := Ω and (a, b) = (p, 0).

Finally, we can leverage these results to prove the main theorem of the paper.



56 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

Theorem 2. Let U ⊆ Rn be an open set, and let f : Rn → R be a function,
smooth in U , such that Bf ⊆ U . If f has a unitary gradient in U , then there exists
an open set Ωf ⊆ U such that f coincides in Ωf with the signed distance function
from Bf . Formally,

‖∇f�U‖ ≡ 1 ⇒ ∃Ωf ⊆ U , f�Ωf ≡ d∗f�Ωf . (4.6)

Proof. The proof is built upon [90, Prop.2.1]. Any trajectory γ : [0, 1] → U that
solves the dynamical system γ̇(t) = ∇f(γ(t))) coincides with the shortest path
between the point γ(0) and the hyper-surface f−1(γ(1)). Note, that we want to
prove that there exists an open set Ωf ⊆ U such that the unitary gradient property
in U implies that f(x) = d∗f (x) for all x ∈ Ωf . The proof is divided into two main
parts:

(i) Let us consider the following ordinary differential equation with initial con-
dition (a.k.a. Cauchy problem){

u̇(t) = ∇f(u(t))

u(0) = x
(4.7)

where x ∈ U . We show that there exists an open set Ωf ⊇ Bf such that each
x ∈ Ωf can be reached by a solution up of the Cauchy-problem (4.7), i.e.,
∃s ∈ R such that x = Θ(s, p) := up(s) for some p ∈ Bf ;

(ii) We show that any trajectory of the flux corresponds the minimal geodetic
(i.e., the shortest path) between the hyper-surfaces of the form f−1(t) and
Bf . This can be obtained by explicitly deducing a close form of f on Ωf .

Let us start with the existence of such a Ωf . Since f is smooth, then F := ∇f
satisfies the hypothesis of Lemma 3, by which we can deduce that for each p ∈ Bf
there exists an open set Ip × Up ⊆ R× U such that the flux

Θ : Ip × Up → U
(t, x) 7→ ux(t)

(4.8)

is of class C∞ (where remember that ux is the solution of the ODE (4.4) with
starting point in x). Let G : Ip × Up → R be the smooth function defined by
G(t, x) := f(Θ(t, x)). By Equation (4.7), dΘ

dt
(0, p) = u̇p(0) = ∇f(up(0)) and

Θ(0, p) = up(0) = p, hence it is possible to observe that

G(0, p) = f(Θ(0, p)) = f(p) = 0 (4.9)

and that
dG

dt
(0, p) = ∇f(p)T

dΘ

dt
(0, p) = ∇f(p)T∇f(p). (4.10)

We then deduce by the Implicit Function Theorem of Lemma 4 that there exists
an open set Ωp ⊆ Up such that

∀x ∈ Ωp, ∃t ∈ Ip : G(t, x) = 0, (4.11)

from which
∀x ∈ Ωp, ∃t ∈ Ip : ux(t) ∈ Bf . (4.12)



4.2. SIGNED DISTANCE CLASSIFIER 57

From the uniqueness of the solution stated in Lemma 3, this implies that, for
each x ∈ Ωp, there exists q ∈ Ωp ∩ Bf and an instant t ∈ Ip such that uq(t) = x.
Finally, by considering Ωf := ∪p∈BfΩp, the first step of the proof is concluded.
Now, we want to prove that the trajectory of the dynamic system coincides with
the geodetic (the curve of minimal length) from any x ∈ Ωf and for any Bp. Let
up : Ip → Ωf be the solution of (4.4) with starting point in p ∈ Bf , and let
x = up(s) be the point of the trajectory for s ∈ Ip. Let us consider a function
γ(t) := up(ts) of the form [0, 1]→ Ωf to denote the curve that connects p and x.
Observe that the length of γ can be found by considering the following formula

L(γ) :=

∫ 1

0

‖γ̇(t)‖ dt =

∫ 1

0

|s|‖u̇p(t)‖ dt. (4.13)

Since ‖u̇p‖ = ‖∇f(u(t))‖ = 1 we can deduce that the length of γ is L(γ) = |s|.
Let ζ : [0, 1] → U be any other curve that connects p and x. Observe that the
following chain of inequalities holds

L(ζ) =

∫ 1

0

‖ζ̇‖ dt ≥

≥
∫ 1

0

∣∣∣〈ζ̇(t),∇f(ζ(t))
〉∣∣∣ dt ≥

≥
∣∣∣∣∫ 1

0

d

dt
f(ζ(t)) dt

∣∣∣∣ = |f(p)− f(x)| = |f(x)|,

(4.14)

where the first inequality is a direct consequence of the Cauchy-Schwarzt inequality
(∀u, v ∈ Rn, |〈u, v〉| ≤ ‖u‖‖v‖).

It remains to prove that L(ζ) ≥ L(γ). To do so, let us observe that ff p ∈ Bf
and s ∈ Ip, then f(up(s)) = s. Indeed, let ϕ(s) = f(up(s)) be the value of
f on the trajectory of the flux. Since ϕ̇ = 〈u̇p(s),∇f(up(s))〉 = 1 we deduce
ϕ(s) = s + ϕ(0) = s. This concludes the second step of the proof, since for each
curve ζ that connects p and x we have that

L(ζ) ≥ |f(x)| = |s| = L(γ),

hence γ is the shortest path between p and x, from which |f(x)| = df (x). In
conclusion, the theorem is proved by observing that, for each x ∈ Ωf , there exists
p ∈ Bf such that x = up(s) for some s. Indeed, by the definition of Ωf , let q such
that x ∈ Ωq, then there exists a p ∈ Ωq ∩ Bf such that x = up(s) for some s.

It is worth noting that, as pointed out in [90, Prop.2.1], the same characteriza-
tion holds for particular geometrical spaces, i.e., Complete Riemannian Manifolds.
Unfortunately, as shown by the author, the only smooth functions with a unitary
gradient in a Complete Riemannian Manifold with non-negative Ricci Curvature
(e.g., Rn) are the affine functions [90, Theorem A]. However, an open set U ⊂ Rn

is a Riemannian Manifold that does not satisfy the completeness property. Hence,
the existence of a non-affine signed distance function is not in contradiction with
[90, Theorem A]. A trivial example is given by the binary classifier f(x) = ‖x‖−1
defined in U = Rn \ {0}. Further details are provided in the Appendix.



58 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

4.2.3 Extension to multiclass classifiers

By following the one-to-rest strategy [91], the results above can be extended to
multi-class classifiers. Let f : Rn → RC be a smooth function by which the
predicted class of a sample x ∈ Rn is given by k̂(x) = argmaxi fi(x), where
k̂(x) = 0 if there is no unique maximum component. Remember that, as discussed
in the previous chapter, and according to [1], [2], [6], the MAP problem for a multi-
class classifier can be stated as follows:

df (x) := inf
p∈Rn

‖p− x‖

s.t. k̂(p) 6= k̂(x).
(MAP)

Here, we extend the definition of signed distance function d∗f to a multi-class Signed
Distance Classifier f as follows.

Definition 4 (Signed distance classifier). A function f : Rn → RC is a Signed
Distance Classifier if, for each pair i, j, with i 6= j, the difference (fi − fj)
corresponds to the signed distance from the one-to-one classification boundary
Bij := {x ∈ Rn : fi − fj = 0}.

The following observation shows that an SDC satisfies similar properties of
Observation 1 for binary classifiers. In particular, the characterization property
can be extended to the multiclass case. Before providing the formal statement,
let us introduce the following Lemma.

Lemma 5. Let x ∈ Rn classified from f with the class l, k̂(x) = l. Let, for each
j 6= l, gj = (fl − fj), then

df (x) = min
j 6=l

dgj

where dgj is the solution of the Problem 4.1 relative to the binary classifier gj. In
formulas,

dgj(x) := inf
p∈Rn

‖p− x‖

s.t. fl(p)− fj(p) = 0
(4.15)

Proof. The main idea is to prove the two inequalities

min
j 6=l

dgj(x) ≤ df (x) ≤ min
j 6=l

dgj(x). (4.16)

The inequality on the right can be deduced by observing that, for each j, the
solution x∗j of the Problem 4.1, relative to the function gj, satisfies the constraints
of the minimum problem MAP relative to the function f . Hence, by the definition
of minimum df (x) = ‖x−x∗‖ ≤ ‖x−x∗j‖. The inequality on the left is deduced by
observing that if x∗ is the solution of df and if j∗ is such that fj∗ = maxj 6=l fj(x

∗),
then x∗ satisfies the constraints of the Problem 4.1 for the function dgj∗ . Hence,

min
j 6=l

dgj ≤ dgj∗ ≤ ‖x− x
∗‖,

which concludes the proof.

Observation 2. Let f : Rn → RC be a signed distance function and let x ∈ Rn

be a sample classified as l = k̂(x). Let s := argmaxj 6=l fj(x) be the second-highest
component of f(x). Hence, the classifier f :



4.3. UNITARY-GRADIENT NEURAL NETWORKS 59

1. Provides a fast way to certificate the robustness of k̂ in x. In fact, fl(x) −
fs(x) = df (x), where df (x) is the MAP.

2. Provides the closest adversarial example to x, i.e.,

x∗ = x− (fl(x)− fs(x))∇(fl − fs)(x),

where x∗ is the unique solution of Problem MAP in x.

Proof. The first statement is a direct consequence of Lemma 5. Consider the
following chain of equalities

df (x) = min
j 6=l

dgj(x) = min
j 6=l

(fl − fj)(x)

= fl −max
j 6=l

fj(x) = (fl − fs)(x).
(4.17)

where the second equivalence is given by the definition of a signed distance classi-
fier. The second statement is a consequence of Observation 1, indeed, ∇(fl−fs)(x)
provides the direction of the shortest path to reach Bls.

Similarly to the binary case, an SDC is characterized by having a unitary
gradient for each pair-wise difference of the output components. In details, by
directly applying Theorem 2, a smooth classifier f is a signed distance classifier
(in some open set) if and only if ‖∇(fi − fj)‖ ≡ 1,∀i 6= j.

4.3 Unitary-gradient neural networks

In the previous section, we showed that if a smooth classifier f satisfies the unitary
gradient property in some open set U ⊇ Bf , then it admits an open set Ωf ⊇ Bf in
which f coincides with the signed distance function with respect to the boundary
Bf . Furthermore, affine functions represent all and the only smooth SDCs in the
whole Rn. Supported by these results, any DNN that globally satisfies the UG
property would coincide with a trivial linear model, which hardly provides good
classification performance for complex tasks. To approximate a non-trivial SDC
with a well-performing DNN fθ, we impose the UG property almost everywhere.
This section shows the proper requirements on fθ to satisfy the hypothesis of
Theorem 2, providing layer-wise sufficient conditions that ensure the UG property.
To this end, we focus our analysis on the family F of feed-forward DNNs f : Rn →
RC of the form f = g ◦ h(L) ◦ · · · ◦ h(1), where g is the output-layer and each h(i) is
any canonical elementary layer (e.g., Fully Connected, Convolutional, etc.) or an
activation function.

Observation 3 (Layer-wise sufficient conditions). Let f be a DNN in F . For each
i, let J (i)(x) be the Jacobian of h(i) evaluated in y = h(i−1) ◦ · · · ◦h(1)(x). For each
j = 1, . . . , C, let Wj(x) be the Jacobian of gj evaluated in y = h(L) ◦ · · · ◦ h(1)(x).
Hence, if

J (i)J (i)T ≡ I, ∀i = 1, . . . , L (GNP)

(Wh −Wk)(Wh −Wk)
T ≡ 1, ∀h 6= k, (UPD)

then, for all h 6= k, fh − fk satisfies the UG property.



60 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

Proof. For a feed-forward neural network, the Jacobian matrix of each component
fj can be decomposed as

Jac(fj) = Wj

L∏
i=1

J (i) = WjJ
(L) · · · J (1). (4.18)

Hence, the thesis follows by the associative property and by observing that (AB)T =
BTAT for any two matrices.

Observe that Condition GNP, namely Gradient Norm Preserving, requires any
layer to have an output dimension no higher than the input dimension. Indeed,
a rectangular matrix J ∈ RM×N can be orthogonal by row, i.e., JJT = I, only if
M ≤ N . Condition GNP is also addressed in [55], [56] to build Lipschitz-Bounded
Neural Networks. However, for their purposes, the authors also consider DNNs
that satisfy a weaker condition named Contraction Property (see [56]), which
includes the M ≥ N case.

4.3.1 Gradient norm preserving layers

We now provide an overview of the most common layers that can satisfy the GNP
property. For a shorter notation, let h be a generic internal layer.

Activation functions Activation functions h : Rn → Rn can be grouped in
two main categories: component-wise and tensor-wise activation functions. Com-
mon component-wise activation functions as ReLU, tanh, and sigmoid do not
satisfy the GNP property [82]. Moreover, since any component-wise function h
that satisfies the GNP property is piece-wise linear with slopes ±1, the abso-
lute value function and the recent N -activation function, [92], are examples of
GNP component-wise activations. Tensor-wise activation functions have recently
gained popularity thanks to [58], [79], [82], who introduced OPLU, GroupSort,
HouseHolder activation functions, respectively, which are specifically designed to
satisfy the GNP property. An overview of these activation functions is left in the
appendix. In this work, we compare the abs with the OPLU and the GroupSort
with a group size of 2, a.k.a MaxMin.

Dense and Convolutional layers A fully connected layer of the form h(x) =
Wx+b has a constant Jacobian matrix Jac(h)(x) = W . This implies that h is GNP
if and only ifW is an orthogonal-by-row matrix. Similarly, for a convolutional layer
with kernelK of shapeM×C×k×k, the GNP property can be satisfied only ifM ≤
C, i.e., the layer does not increase the number of channels of the input tensor [86].
As done in [58], in our model, we consider the Björck parameterization strategy
to guarantee the orthogonality of the fully connected layers and the CayleyConv
strategy presented in [56] for the convolutional layers.

Pooling, normalization and residual layers Tow dimensional maxpooling
layers with kernel k = (k1, k2) ∈ N2, stride s = k, and without padding, satisfy the
GNP property if applied to a tensor whose spatial dimensions H,W are multiples
of k1 and k2, respectively. This can be proved by observing that the Jacobian



4.3. UNITARY-GRADIENT NEURAL NETWORKS 61

matrix corresponds to an othogonal projection matrix [86]. Batch-normalization
layers with a non-unitary variance do not satisfies the GNP property [86]. For
residual blocks, it is still not clear whether they can or cannot satisfy the GNP
property. Indeed, a residual layer of the form h(x) = x+ h̃(x) is GNP if and only
if Jac(h̃)Jac(h̃)T +Jac(h̃)+Jac(h̃)T ≡ 0. For such reasons, the last two mentioned
layers are not considered in our model.

4.3.2 Unitary pair difference layers

This section focuses on the second condition stated in Observation 3: the Unitary
Pair Difference (UPD). Since most neural classifiers include a last dense layer,
we restrict our analysis to this case. Let g(x) = Wx + b be the last layer since
Jac(g) ≡ W , then the UPD property requires that for every two rows Wh, Wk the
difference Wh −Wk has unitary norm. A matrix W satisfies the UPD property if
the function x 7→ Wx is UPD.
Bounded UPD layer. An UPD matrix from any orthogonal-by-row matrix as
stated by the next observation.

Observation 4. Let Q ∈ Rm×C such that QQT = I. Then, W = 1√
2
Q satisfies

the UPD property, indeed

‖Wh −Wk‖2 = ‖Wh‖2︸ ︷︷ ︸
1/2

+ ‖Wk‖2︸ ︷︷ ︸
1/2

−2W T
h Wk︸ ︷︷ ︸
0

= 1. (4.19)

An UPD layer with matrix W as above is said to be bounded, as each row of
W is bounded to have norm 1/

√
2.

As pointed out in [79], this constraint makes it harder to train the model when
the output dimension C is large (i.e., there are many classes).
Unbounded UPD layer. To avoid this issue, we considered an UPD layer with
parametric weight matrix W (U). Matrix W (U) is obtained by iteratively applying
the L-BFGS, an optimization algorithm for unconstrained minimum problems [93],
to the loss

Ψ(U) =
∑
h<k

(‖Uh − Uk‖2 − 1)2. (4.20)

More specifically, if psi is the routine that computes such a loss function and
L-BFGS is the routine that performs one step of the L-BFGS optimization algo-
rithm, then the weight matrix is obtained as W = UPD(U), where UPD is the
following procedure:

def UPD(U: Tensor):

# Returns an UPD matrix

W = U

for in range(max_iter):

W = L-BFGS(psi(U), W)

return W

Listing 4.1: Psudo code that parameterizes an UPD matrix through a parameter U . The
resulting W is obtained by performing few steps of the L-BFGS algorithm to find a minimum of
Ψ with starting point U .



62 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

Note that the UPD layer g(x) = W (U)x+b depends on the weights U, b and it is
fully differentiable in U . This implies that such a procedure, like parameterization
strategies for orthogonal layers, can be applied during training. Finally, note
that the algorithm complexity strongly depends on the computational cost of
the objective Ψ(U). Our implementation exploits parallelism by implementing
Ψ(U) by means of a matrix product of the form A(C)U , where A(C) is designed to
compute all the pair differences between rows required by Eq. (4.20). In detail,
the objective function Ψ can be efficiently computed by exploiting the parallelism
as follows. Let us consider the family of matrices A(k), within

(
k
2

)
rows and k

columns, recursively defined as follows

A(2) =
(
1 −1

)
, A(k) =



1
...
1
−Idk−1

0
...
0

A(k−1)


∀k ≥ 2. (4.21)

Hence, observe that if U ∈ RC×m is some matrix, then the resulting matrix product
A(C) U corresponds to a matrix where each row is one of the possible difference
between two rows of U . In formulas

A(C)U = A(C)

U
T
1
...
UT
C

 =


(U1 − U2)T

...
(U1 − UC)T

(U2 − U3)T

...

 . (4.22)

This allows exploiting the parallelism of the GPUs in order to efficiently compute
the objective function Ψ. In conclusion, experimental tests reported in Figure 4.2
show that 3 iterations of the L-BFGS algorithm are sufficient to obtain a UPD
matrix W whose differences between rows have an Euclidean norm in the range
1± 10−5 for the case of interest (C = 10).

4.3.3 Unitary-Gradient Neural Network Architecture

This section describes how to practically combine GNP and UPD layers to obtain
a neural network fθ such that all pair-wise differences of its output vector have
unitary gradient. The main difficulty in crafting such a network is due to the GNP
property, which implies a decreasing dimension in both dense and convolutional
layers. Indeed, most DNNs for image classification process a 3-channel image by
gradually increasing the channel dimension of convolutional layers. To overcome
this issue, we leverage a 2-dimensional PixelUnshuffle layer [94], which inputs a
tensor of shape C × rH × rW and outputs a tensor of shape r2C × H × W .
The output is obtained by only rearranging input components. As such, this
layer satisfies the GNP property. The PixelUnshuffle layer allows increasing the



4.3. UNITARY-GRADIENT NEURAL NETWORKS 63

2 0 2
1e 5+1

0

25

50

75

100

125

150

De
ns

ity

classes = 10 | epochs = 2

1 0 1 2
1e 5+1

0

50

100

150

classes = 10 | epochs = 3

1 0 1
1e 5+1

0

50

100

150

200
classes = 10 | epochs = 4

2 1 0 1 2
1e 4+1

0

200

400

600

800

1000

De
ns

ity

classes = 43 | epochs = 2

1 0 1
1e 4+1

0

200

400

600

800

1000

1200

classes = 43 | epochs = 3

2 1 0 1 2
1e 4+1

0

500

1000

1500

classes = 43 | epochs = 4

1.0 0.5 0.0 0.5
pd_norms 1e 4+1

0

2000

4000

6000

8000

10000

De
ns

ity

classes = 100 | epochs = 2

0.5 0.0 0.5
pd_norms 1e 4+1

0

2000

4000

6000

8000

10000

12000

classes = 100 | epochs = 3

0.5 0.0 0.5
pd_norms 1e 4+1

0

2000

4000

6000

8000

10000

12000

classes = 100 | epochs = 4

Figure 4.2: Distribution of the pair row differences of weight matrices W = UPD(U) obtained by
applying the L-BFGS for 2, 3, 4 steps. The analysis involves matrices with 10, 43, 100 rows and
512 columns. Distributions are computed by evaluating the Euclidean norm of all the pair-wise
differences of the rows of the matrix W for 10 random generated parameters U .

number of channels of hidden layers even in convolutional GNP networks. It is
worth pointing out that [55], [56] also leveraged such a permutation layer, but
only to emulate a convolution with stride 2. That said, the UGNN proposed in
this work, shown in Fig. 4.3, consists of five GNP blocks, two fully connected
GNP layers, a last UPD layer (bounded or unbounded), and GNP activation
functions. Each GNP block consists of two GNP convolutional layers and one last
PixelUnshuffle layer with scaling factor 2; a GNP activation function is applied
after each convolution (see Tab. 4.1). Each convolutional layer has a circular
padding to preserve the spatial dimension of the input. Furthermore, before the
flattening stage, a max-pool layer with window size and stride H/25 is applied to
process input of different spatial dimensions H = m·25, for any m ∈ N. Note that,
to the best of our records, this is the first instance of a convolutional DNN that
aims at practically implementing an SDC and that provably satisfies ‖∇(fi−fj)‖ ≡
1 almost everywhere. [95] only focused on fully-connected networks, while [81]
only approximated an optimal f ∗ such that ‖∇f ∗i ‖ ≡ 1. [96] approximate a
binary SDC via SVM. In conclusion, observe that, by design, each pair-difference
fi− fj of an UGNN satisfies the 1-Lipschitz property, hence the marginMf (x) =
fl(x)−maxj 6=l fj(x) is a lower bound of the MAP in x.

Observation 5 (Certifiable Robustness). If f is a UGNN, then k̂(x) = argmaxi fi(x)



64 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

Orth Conv + UnShuffle Adaptive Pool Orth FC UPD

Figure 4.3: Tested UGNN architecture: 5 GNP conv-blocks, 2 FC GNP layers and 1 UPD layer.

is Mf (x)−robust in x.

Proof. The proof can be easly deduced by observing that, by construction, each
pair-difference fi − fj of an UGNN satisfies the 1-Lipschitz property, hence the
marginMf (x) = fl(x)−maxj 6=l fj(x) is a lower bound of the MAP in x, [56].

4.4 Experimental Results

Experiments were conducted to evaluate the classification accuracy of a UGNN
and its capability of implementing an SDC. As done by related works, the exper-
iments targeted the CIFAR10 datasets. We compared UGNN with the following
1-Lipschitz models: LargeConvNet [55], ResNet9 [56], and LipConvNet5 [59].

4.4.1 Experimental Setup

For all the combinations of GNP activations, UPD layers, preprocessing, and input
size, our model was trained for 300 epochs, using the Adam optimizer [38], with
learning rate decreased by 0.5 after 100 and 200 epochs, and a batch of 1024
samples, containing randomly cropped and randomly horizontally flipped images.
This configuration is the same used in [59]. The other models were trained by
following the original papers, leveraging a multi-margin loss function with a margin
m = ε

√
2, with ε = 0.5. For a fair comparison, UGNN was trained with a margin

m = ε, being the lower bound Mf of the MAP for UGNN different from the
Mf/

√
2 of the other DNNs, as discussed in Observation 5. For the experiments,

we used 4 Nvidia Tesla-V100 with cuda 10.1 and PyTorch 1.8 [73].

Layers Output Shape

OrthConv(3 · 4i, 3 · 4i, 3) 3 · 4i × H
2i
× H

2i

GNP Activation -
OrthConv(3 · 4i, 3 · 4i, 3) -
GNP Activation -
PixelUnshuffle(2) 3 · 4i+1 × H

2i+1 × H
2i+1

Table 4.1: An example of the (i+1)th internal GNP conv-block. Observe that the number of
channels increases with a geometric progression of common ratio 4 and each spatial dimension
decreases with a ratio of 2.



4.4. EXPERIMENTAL RESULTS 65

4.4.2 Accuracy Analysis

Table 4.2 summarizes the accuracy on the testset, where UGNN was tested with
the (Abs, MaxMin, OPLU) activation, and the last UPD layers (bounded and un-
bounded). The other models were tested with the original configuration and with

Accuracy [%]
Models Std.Norm Raw

LargeConvNet 79.0± 0.26 72.2± 0.11
LargeConvNet+Abs 77.8± 0.33 71.8± 0.25
LipConvNet5 78.0± 0.26 68.8± 0.35
LipConvNet5+Abs 76.1± 0.31 65.5± 0.68
ResNet9 78.7± 0.22 66.4± 0.17
ResNet9+Abs 78.1± 0.34 65.6± 0.22

UGNN+Abs+updB 71.9± 0.29 69.2± 0.31
UGNN+Abs+updU 72.1± 0.54 68.9± 0.81
UGNN+MaxMin+updB 72.6± 0.79 70.4± 0.52
UGNN+MaxMin+updU 72.7± 0.38 70.4± 0.86
UGNN+OPLU+updB 71.9± 0.09 70.5± 0.39
UGNN+OPLU+updU 72.0± 0.70 70.6± 0.45

Table 4.2: Accuracy comparison between the 1-Lipschitz models and the UGNNs.

the abs activation. Experiments were performed with and without standard nor-
malization (Std.Norm) of the input, and each configuration was trained four times
with randomly initialized weights to obtain statically sound results. In summary,
the take-away messages of the Tab. 4.2 are: (i) The unbounded UPD layer (named
updU) increased the performance with respect to the bounded one (named updB)
in almost all cases. (ii) Std.Norm pre-processing significantly increased the per-
formance. We believe this is due to the GNP property of the layers, which cannot
learn a channel re-scaling different from ±1. (iii) The use of abs activations in the
1-Lipschitz models does not cause a significant performance loss with respect to
the other GNP activations (that requires a more expensive sorting). (iv) Despite
the strict constraints of the UGNN architecture, it achieves comparable perfor-
mance in the raw case, while there is a clear gap of accuracy for the Std.Norm
case.To improve the UGNN accuracy, we investigated for intrinsic learning char-

acteristics of its architecture. In particular, we noted that a strong limitation of
the model is in the last two GNP blocks (see Fig. 4.3), which process tensors with
a high number of channels (thus higher learning capabilities) but with compressed
spatial dimensions (H/8 and H/16). Hence, for small input images (e.g., 32×32),
such layers cannot exploit the spatial capability of convolutions. Table 4.3 reports
a performance evaluation of the UGNN (with MaxMin activation) for larger input
sizes. Note that, differently from the UGNN, common DNNs do not benefit from
an up-scaling image transformation, since it is possible to apply any number of
channels on the first convolutional layers. Moreover, the compared models do not
have adaptive layers, hence do not handle different input sizes. This observation



66 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

Accuracy [%]
Input Size Last Layer Std.Norm Raw

64 updB 72.1± 0.27 72.4± 0.42
updU 72.6± 0.69 72.8± 0.61

128 updB 74.5± 0.56 75.9± 0.07
updU 74.9± 0.45 76.2± 0.30

256 updB 76.5± 0.35 78.4± 0.29
updU 76.8± 0.29 78.5± 0.22

Table 4.3: Accuracy comparison of the UGNN models with different, pre-processed input sizes
and output layers.

allows the UGNN to outperform the other models for the raw case and reach
similar accuracy for the Std.Norm case.

4.4.3 MAP estimation through UGNN

This section evaluates the MAP estimation through the lower bound (LB) given
by the UGNN discussed in Observation 2 and the other 1-Lipschitz models.

Figure 4.4 compares the ratio of the LB and the MAP between the 1-Lipschitz
DDNs and a UGNN with MaxMin and bounded upd in four different scenarios.
The MAP is computed with the expensive Iterative Penalty procedure described
in Section 2.4. Note that our analysis considers the worst-case MAP, i.e., without
box-constraints, as also done by the compared 1-Lipschitz models. Indeed, since
image pixels are bounded in [0, 1], the MAP is itself a lower bound of the distance
from the closest adversarial image. Table 4.4 reports statistics related to the
LB/MAP ratio for different UGNNs, where the box-constrained (BC) MAPs were
computed using the Decoupling Direction Norm strategy [9]. The column #N

contains the number of samples correctly classified by the model and for which
the MAP algorithm reached convergence. Note that, in all the tested cases, the LB
provided by the UGNN resulted to be tighter than the other 1-Lipschitz DNNs.
Similar considerations hold for other model configurations (see Appendix).

4.4.4 Certifiable robust accuracy

Figure 4.5 shows a close comparison of the certifiable robust accuracy of the for
different values of ε, i.e., the percentage of correctly classified samples with a
LB lower than ε (refer to Chapter 3 for a detailed definition). Unfortunately,
even though UGNN clearly provides a better approximation of the MAP, the
certifiable accuracy of the model does not outperform the certifiable accuracy of
other 1-Lipschitz models. Indeed, as it can be observed from Figure 4.5, the same
relative drop in the accuracy of the other 1-Lipschitz models can be noticed for
the UGNN, suggesting also that the certifiable robustness is strictly related to its
(low) standard accuracy.



4.4. EXPERIMENTAL RESULTS 67

(a) Normalized Inputs. UGNN with OPLU and upd. (b) Normalized Inputs. UGNN with OPLU and upd.

(c) Raw Inputs (not normalized). UGNN with
MaxMin and orth.

(d) Raw Inputs (not normalized). UGNN with
MaxMin and orth.

Figure 4.4: Comparisons of MAP estimation for the tested models with and without box con-
straints. For the empirical MAP computation, we used IP (a, c) for the Box-Unconstrained
case and DDN for the constrained (b,d). Note that, in the image (c), due to a failure in the IP
algorithm convergence, a few samples (less than 20) reported an inconsistent MAP lower than
expected.



68 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS

Model LB/MAP #N B.C

ResNet9 (norm) .21±.042 7900 3

ResNet9 (raw) .34±.063 6669 3

LargeConvNet (norm) .36±.036 2148 3

LipConvNet5 (norm) .41±.060 7838 3

LargeConvNet (raw) .46±.057 7219 3

LipConvNet5 (raw) .58±.069 6911 3

UGNN+OPLU+updB (norm) .67±.129 7101 3

UGNN+Abs+updB (norm) .67±.129 7220 3

UGNN+OPLU+updU (norm) .67±.131 7281 3

UGNN+Abs+updU (norm) .67±.128 7244 3

UGNN+MaxMin+updU (norm) .67±.130 7311 3

UGNN+MaxMin+updB (norm) .69±.109 4386 3

UGNN+OPLU+updU (raw) .70±.090 7125 3

UGNN+OPLU+updB (raw) .70±.093 7098 3

UGNN+MaxMin+updB (raw) .71±.087 7114 3

UGNN+MaxMin+updU (raw) .71±.088 7118 3

UGNN+Abs+updB (raw) .71±.090 6960 3

UGNN+Abs+updU (raw) .71±.092 6940 3

ResNet9 (norm) .26±.036 7904 7

ResNet9 (raw) .44±.056 6663 7

LargeConvNet (norm) .44±.027 7933 7

LipConvNet5 (norm) .52±.031 7840 7

LargeConvNet (raw) .58±.046 2429 7

LipConvNet5 (raw) .74±.049 6912 7

UGNN+OPLU+updU (raw) .93±.101 6755 7

UGNN+OPLU+updB (raw) .95±.063 7102 7

UGNN+MaxMin+updU (raw) .95±.061 7127 7

UGNN+MaxMin+updB (raw) .95±.056 7117 7

UGNN+Abs+updB (raw) .95±.058 6965 7

UGNN+Abs+updU (raw) .95±.058 6949 7

UGNN+OPLU+updB (norm) .96±.046 7215 7

UGNN+Abs+updB (norm) .96±.049 7228 7

UGNN+OPLU+updU (norm) .96±.047 7282 7

UGNN+MaxMin+updU (norm) .96±.051 7316 7

UGNN+MaxMin+updB (norm) .96±.044 7327 7

UGNN+Abs+updU (norm) .96±.039 7247 7

Table 4.4: Evaluation of the LB/MAP ratio deduced by the output of the models with/without
Box Constraint.



4.4. EXPERIMENTAL RESULTS 69

Figure 4.5: Certifiable robust accuracy for different values of ε despite the highest precision of
the UGNN model in approximating the actual minimal adversarial perturbation, the certifiable
robust accuracy does not outperform other 1-Lipschitz models.



70 CHAPTER 4. SIGNED DISTANCE CLASSIFIERS



Chapter 5
Conclusions and Future Works

This thesis delved into various methods for obtaining formal guarantees on the
robustness of deep neural networks. This chapter aims to summarize the main
contributions of each single chapter of the thesis and provide some insights into
future research directions.

5.1 Summary of the contributions

The first strategy for achieving certifiable robustness for deep neural networks is
based on the fast estimation of the minimal adversarial perturbation presented
in the Chapter 2. In this chapter, the problem of estimating the minimal ad-
versarial perturbation is addressed, proposing two root-finding-based strategies
and providing theoretical results on the goodness of the estimation. Such a the-
oretical finding can be leveraged to estimate the robustness of a classifier for a
given input x close enough to the classification boundary. Indeed, the approxi-
mate distance t(x, l), obtained with the proposed approaches, results in being less
computationally expensive than the distance d(x, l) obtained with the state-of-
the-arte methods, enabling a fast estimation of the ε-robustness of a classifier for
the sample x. Furthermore, the goodness of the estimation is linked to a model-
dependent value, named boundary proximity index Kf (Ωδ), which encapsulates
the regularity of the decision boundary. Indeed, such a coefficient depends on the
first and the second derivative of the model and provides a neighborhood from
which the decision boundary can be easily reached only by following the gradient
direction; the larger the BPI the larger the neighborhood.

Observe that a sufficient condition for a large BPI of a certain model f is
that the gradient ∇f has a constant Euclidean norm, and the eigenvalues of the
Hessian matrix ∇2f are bounded. Despite it is not completely clear how to design
a model with a large BPI, signed distance classifiers, presented in the Chapter 4,
represent a natural attempt since feature a constant gradient of unitary Euclidean
norm. Nevertheless, signed distance classifiers require orthogonal convolutional
and dense layers, and hence are strictly related to the 1-Lipschitz neural networks
that can be obtained by composing accurately Lipschitz-bounded layers.

For this reason, Chapter 3 focused on addressing certifiable guarantees of ro-
bustness for deep neural networks through Lipschitz bounded layers, by present-

71



72 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

ing a comparative study of state-of-the-art 1-Lipschitz layers. The comparison is
made under the lens of different metrics, such as time and memory requirements,
accuracy, and certified robust accuracy, all evaluated at training and inference
time. A theoretical comparison of the methods in terms of time and memory com-
plexity was also presented and validated by experiments. Taking all metrics into
account (summarized in Figure 3.1), the results are in favor of CPL, due to its
highest performance and lower consumption of computational resources. When
large computational resources are available and the application does not impose
stringent timing constraints during inference and training, the SOC layer could be
used, due to its slightly better performance. Finally, those applications in which
the inference time is crucial may take advantage of AOL or BCOP, which do not
introduce additional runtime overhead (during inference) compared to a standard
convolution.

Finally, the Chapter 4, deepen another possible direction for enhancing certifi-
able robst guarantees. This chapter proposed the novel family of Signed-Distance
Classifiers (SDCs), which provides the minimal adversarial perturbation (MAP)
by just computing the difference between the two highest output components,
thus offering an online-certifiable prediction. To practically approximate an SDC,
we considered a neural network model, named Unitary-Gradient Neural Network
(UGNN), that furthermore involves a novel dense layer, named Unitary Pair Dif-
ference (UPD), which features an unbounded weight matrix while preserving the
unitary-gradient property. Several experiments were conducted to compare the
proposed architecture with the most related certifiable 1-Lipschitz models. On
one hand, the experiments highlighted that the UGNN is capable of providing
a strict estimation of the MAP, outperforming the lower bound provided by the
other models. On the other hand, the UGNN showed a low accuracy in the clas-
sification task, in line with the other 1-Lipschitz models composed of orthogonal
convolutional and dense layers. We believe this is a consequence of the strict
constraints of the architecture that limit the learning capabilities of the model.

5.2 Impact of the contributions

The fast estimation of the minimal adversarial perturbation, presented in Chap-
ter 2, practically was conceived as a fast verification-like method that could
be deployed on a safety-critical system with a low computational budget. An
open-source repository containing available code for experiments can be found in
gitlab.retis.santannapisa.it/retis-ai/fast-map. The analysis of the curvature of the
decision boundary proposed in the paper [14] has been appreciated in the work
of [97], which proposes a revisited version of the deepfool method. The revised
method takes into account the direction of the gradient with respect to the decision
boundary while finding the adversarial direction, thus providing a more accurate
estimation of the minimal adversarial perturbation.

The signed distance classifers proposed in the Chapter 4 practically was con-
ceived to obtain a model (the unitary gradient neural network) that, similarly to
1-Lipschitz models, directly outputs a lower bound of the minimal adversarial per-
turbation. Differently from Lipschitz bounded neural networks, the estimation of
the MAP is tight, reducing the amount of ”false-postive” rejections. The results

https://gitlab.retis.santannapisa.it/retis-ai/fast-map


5.3. TAKEWAYS AND FUTURE DIRECTIONS 73

of the chapter are taken from the paper, [18], that has been considered in the
works [98], [99] where the authors focused on 1-class classification for the sake of
out-of-distribution detection through SDC.

5.3 Takeways and future directions

The section summarizes the key takeaways of the thesis and proposes some future
research directions that can be addressed in future works. In detail, the key
takeaway of the Chapter 2 is the following. The fast estimation of the MAP
for the sake of a robust classifier through rejection of unsafe inputs, without any
other countermeasure, may be not a viable strategy. Indeed, the certifiable robust
accuracy of such a classifier would be particularly low, since deep neural networks
remain sensitive to tiny perturbations of the inputs. Indeed, the main issue still
remains, that is, the training of such models results in decision boundaries that
are too close to training and testing distributions. A perspective for future works
is to investigate the possibility of leveraging the MAP estimation for the sake of a
more robust training of the model, to improve the robustness of the model without
affecting the accuracy.

The key takeaway of the Chapter 3 and Chapter 4 is that, despite the Lipschitz
and UGNN models has to be considered a valid option for the achievement of
certifiable robust accuracy in a safety-critical system, a bigger effort has to be
pursued on improving the certifiable robust accuracy of such models. Indeed, the
training of the models strongly relies on a loss function that increases the margin
between training samples and the decision boundaries. Further techniques have
to be investigated in future works to improve the training, such as augmentation
or regularization strategies, and transfer-learning from larger datasets.



74 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS



Acronyms

ALMA Augmented Lagrangian Method for Adversarial attacks.

AOL Almost Orthogonal Layer.

BCOP Block Convolution Orthogonal Parameterization.

CB Closest Boundary.

CLEVER Cross Lipschitz Extreme Value for nEtwork Robustness.

CW Carlini and Wagner.

DDN Decoupling Direction Norm.

DF DeepFool.

DNN Deep Neural Network.

ECO Explicitly Constructed Orthogonal.

FGSM Fast Gradient Sign.

FMN Fast Minimum Norm.

FOB Fast Outer Boundary.

IP Iterative Penalty.

L-BFGS-B Limited-memory Broyden–Fletcher–Goldfarb–Shanno Box-constrained.

MAP Minimal Adversarial Perturbation.

ONI Orthogonalization using Newton’s Iteration.

RS Randomized Smoothing.

SDC Signed Distance Classifier.

SOC Skew Orthogonal Convolution.

UPD Unitary Pair Difference.

75



76 Acronyms



Bibliography

[1] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giac-
into, and F. Roli, “Evasion attacks against machine learning at test time,”
in European Conference of Machine Learning and Knowledge Discovery in
Databases, 2013.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in International
Conference on Learning Representations (ICLR), 2014.

[3] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversar-
ial machine learning,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[4] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in
computer vision: A survey,” Ieee Access, 2018.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Representa-
tions (ICLR), 2015.

[6] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple and
accurate method to fool deep neural networks,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[7] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE Symposium on Security and Privacy (SP), 2017.

[8] F. Croce and M. Hein, “Minimally distorted adversarial examples with a fast
adaptive boundary attack,” in International Conference on Machine Learing
(ICML), 2020.

[9] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and
E. Granger, “Decoupling direction and norm for efficient gradient-based l2
adversarial attacks and defenses,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[10] M. Pintor, F. Roli, W. Brendel, and B. Biggio, “Fast minimum-norm ad-
versarial attacks through adaptive norm constraints,” in Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[11] J. Rony, E. Granger, M. Pedersoli, and I. B. Ayed, “Augmented lagrangian
adversarial attacks,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021.

77



78 BIBLIOGRAPHY

[12] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Relu-
plex: An efficient SMT solver for verifying deep neural networks,” in Inter-
national conference on computer aided verification, 2017.

[13] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in International Conference on
Machine Learing (ICML), 2018.

[14] F. Brau, G. Rossolini, A. Biondi, and G. Buttazzo, “On the minimal adver-
sarial perturbation for deep neural networks with provable estimation error,”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2023.

[15] J. Chen, J. Raghuram, J. Choi, X. Wu, Y. Liang, and S. Jha, “Revisiting
adversarial robustness of classifiers with a reject option,” in The AAAI-22
Workshop on Adversarial Machine Learning and Beyond, 2022.

[16] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference
on Learning Representations (ICLR), 2018.

[17] B. Prach, F. Brau, G. Buttazzo, and C. H. Lampert, 1-lipschitz layers com-
pared: Memory, speed, and certifiable robustness, 2023. arXiv: 2311.16833.

[18] F. Brau, G. Rossolini, A. Biondi, and G. Buttazzo, “Robust-by-design clas-
sification via unitary-gradient neural networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2023.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, 2015.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[21] G. B. Folland, “Higher-order derivatives and taylor’s formula in several vari-
ables,” Preprint, pp. 1–4, 2005. [Online]. Available: https://sites.math.
washington.edu/~folland/Math425/taylor2.pdf.

[22] D. Bertsekas, Nonlinear Programming, 2nd, ser. Athena scientific optimiza-
tion and computation series. Athena Scientific, 1999.

[23] G. Rossolini, A. Biondi, and G. Buttazzo, “Increasing the confidence of
deep neural networks by coverage analysis,” IEEE Transactions on Software
Engineering, 2022.

[24] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proceedings of the 10th ACM Work-
shop on Artificial Intelligence and Security, 2017.

[25] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and P. D.
McDaniel, “Ensemble adversarial training: Attacks and defenses.,” in ICLR
(Poster), 2018.

[26] F. Nesti, A. Biondi, and G. Buttazzo, “Detecting adversarial examples by in-
put transformations, defense perturbations, and voting,” IEEE Transactions
on Neural Networks and Learning Systems, 2021.

https://arxiv.org/abs/2311.16833
https://sites.math.washington.edu/~folland/Math425/taylor2.pdf
https://sites.math.washington.edu/~folland/Math425/taylor2.pdf


BIBLIOGRAPHY 79

[27] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks,” in 2016
IEEE symposium on security and privacy (SP), 2016.

[28] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods,
ser. Athena scientific optimization and computation series. Athena Scientific,
1996, isbn: 978-1-886529-04-5.

[29] A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of classifiers’ robustness to
adversarial perturbations,” Machine learning, 2018.

[30] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “Boosting robustness certi-
fication of neural networks,” in International Conference on Learning Rep-
resentations (ICLR), 2018.

[31] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
in Advances in Neural Information Processing Systems (NeurIPS), 2018.

[32] A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel, “Cnn-cert:
An efficient framework for certifying robustness of convolutional neural net-
works,” 2019.

[33] C. Liu, R. Tomioka, and V. Cevher, “On certifying non-uniform bounds
against adversarial attacks,” in International Conference on Machine Lear-
ing (ICML), 2019.

[34] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli, “A dual
approach to scalable verification of deep networks.,” in UAI, 2018.

[35] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter,
“Beta-crown: Efficient bound propagation with per-neuron split constraints
for neural network robustness verification,” in Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2021.

[36] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning,
and I. Dhillon, “Towards fast computation of certified robustness for relu
networks,” International Conference on Machine Learing (ICML), 2018.

[37] R. H. Byrd, L. Peihuang, and J. Nocedal. (1996). “A limited-memory algo-
rithm for bound-constrained optimization.”

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
International Conference on Learning Representations (ICLR), 2015.

[39] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[40] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset
for benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[41] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from
tiny images,” Technical Report, Univeristy of Toronto, 2009.

[42] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting ad-
versarial perturbations,” in International Conference on Learning Represen-
tations (ICLR), 2017.



80 BIBLIOGRAPHY

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[44] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in International Conference
on Machine Learing (ICML), 2013.

[45] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,” Neu-
ral networks, 2012.

[46] A. Wong, M. J. Shafiee, and M. S. Jules, “Micronnet: A highly compact deep
convolutional neural network architecture for real-time embedded traffic sign
classification,” IEEE Access, 2018.

[47] J. Rauber, R. Zimmermann, M. Bethge, and W. Brendel, “Foolbox native:
Fast adversarial attacks to benchmark the robustness of machine learning
models in pytorch, tensorflow, and jax,” Journal of Open Source Software,
2020.

[48] Adversarial robustness toolbox. [Online]. Available: https://github.com/
Trusted-AI/adversarial-robustness-toolbox.git.

[49] L. Li, T. Xie, and B. Li, “Sok: Certified robustness for deep neural networks,”
in IEEE Symposium on Security and Privacy (SP), 2023.

[50] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via
randomized smoothing,” in International Conference on Machine Learing
(ICML), 2019.

[51] N. Carlini, F. Tramer, K. D. Dvijotham, L. Rice, M. Sun, and J. Z. Kolter,
“(Certified!!) adversarial robustness for free!,” 2023.

[52] M. Losch, D. Stutz, B. Schiele, and M. Fritz, “Certified robust models with
slack control and large lipschitz constants,” 2023. arXiv: 2309.06166.

[53] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parse-
val networks: Improving robustness to adversarial examples,” International
Conference on Machine Learing (ICML), 2017.

[54] B. Prach and C. H. Lampert, “Almost-orthogonal layers for efficient general-
purpose Lipschitz networks,” in European Conference on Computer Vision
(ECCV), 2022.

[55] Q. Li, S. Haque, C. Anil, J. Lucas, R. B. Grosse, and J.-H. Jacobsen,
“Preventing gradient attenuation in Lipschitz constrained convolutional net-
works,” in Advances in Neural Information Processing Systems (NeurIPS),
2019.

[56] A. Trockman and J. Z. Kolter, “Orthogonalizing convolutional layers with
the Cayley transform,” International Conference on Learning Representa-
tions (ICLR), 2021.

[57] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural networks,”
in International Conference on Machine Learing (ICML), 2021.

[58] C. Anil, J. Lucas, and R. Grosse, “Sorting out Lipschitz function approxi-
mation,” International Conference on Machine Learing (ICML), 2019.

https://github.com/Trusted-AI/adversarial-robustness-toolbox.git
https://github.com/Trusted-AI/adversarial-robustness-toolbox.git
https://arxiv.org/abs/2309.06166


BIBLIOGRAPHY 81

[59] S. Singla and S. Feizi, “Skew orthogonal convolutions,” in International Con-
ference on Machine Learing (ICML), 2021.

[60] X. Xu, L. Li, and B. Li, “Lot: Layer-wise orthogonal training on improving l2
certified robustness,” in Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[61] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” International Conference on
Learning Representations (ICLR), 2018.

[62] S Singla and S Feizi, “Fantastic four: Differentiable bounds on singular val-
ues of convolution layers,” International Conference on Learning Represen-
tations (ICLR), 2021.

[63] Å. Björck and C. Bowie, “An iterative algorithm for computing the best
estimate of an orthogonal matrix,” SIAM Journal on Numerical Analysis,
1971.

[64] L. Meunier, B. J. Delattre, A. Araujo, and A. Allauzen, “A dynamical system
perspective for Lipschitz neural networks,” in International Conference on
Machine Learing (ICML), 2022.

[65] F. Farnia, J. Zhang, and D. Tse, “Generalizable adversarial training via
spectral normalization,” in International Conference on Learning Represen-
tations (ICLR), 2018.

[66] T. Yu, J. Li, Y. Cai, and P. Li, “Constructing orthogonal convolutions in
an explicit manner,” International Conference on Learning Representations
(ICLR), 2021.

[67] R. Wang and I. Manchester, “Direct parameterization of Lipschitz-bounded
deep networks,” in International Conference on Machine Learing (ICML),
2023.

[68] L. Huang, L. Liu, F. Zhu, D. Wan, Z. Yuan, B. Li, and L. Shao, “Controllable
orthogonalization in training DNNs,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[69] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington, “Dy-
namical isometry and a mean field theory of CNNs: How to train 10,000-layer
vanilla convolutional neural networks,” in International Conference on Ma-
chine Learing (ICML), 2018.

[70] A. Cayley, “About the algebraic structure of the orthogonal group and the
other classical groups in a field of characteristic zero or a prime characteris-
tic.,” Journal für die reine und angewandte Mathematik, 1846.

[71] E. Hoogeboom, V. Garcia Satorras, J. Tomczak, and M. Welling, “The con-
volution exponential and generalized Sylvester flows,” in Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[72] A. Araujo, A. J. Havens, B. Delattre, A. Allauzen, and B. Hu, “A unified
algebraic perspective on Lipschitz neural networks,” in International Con-
ference on Learning Representations (ICLR), 2023.



82 BIBLIOGRAPHY

[73] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems (NeurIPS),
2019.

[74] L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural
networks using large learning rates,” in Artificial intelligence and machine
learning for multi-domain operations applications, 2019.

[75] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N,
2015.

[76] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical
automated data augmentation with a reduced search space,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition
workshops, 2020.

[77] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-margin training: Scal-
able certification of perturbation invariance for deep neural networks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[78] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,”
in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[79] S. Singla, S. Singla, and S. Feizi, “Improved deterministic l2 robustness
on CIFAR-10 and CIFAR-100,” in International Conference on Learning
Representations (ICLR), 2022.

[80] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter, “Scaling provable
adversarial defenses,” 2018.

[81] M. Serrurier, F. Mamalet, A. González-Sanz, T. Boissin, J.-M. Loubes, and
E. Del Barrio, “Achieving robustness in classification using optimal trans-
port with hinge regularization,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[82] A. Chernodub and D. Nowicki, “Norm-preserving orthogonal permutation
linear unit activation functions (OPLU),” in International Conference of
Artificial Neural Networks and Machine Learning (ICANN), 2016.

[83] N. Carlini, G. Katz, C. Barrett, and D. L. Dill, Provably minimally-distorted
adversarial examples, 2018. arXiv: 1709.10207.

[84] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness of
a classifier against adversarial manipulation,” in Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

[85] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and
L. Daniel, “Evaluating the robustness of neural networks: An extreme value
theory approach,” in International Conference on Learning Representations
(ICLR), 2018.

https://arxiv.org/abs/1709.10207


BIBLIOGRAPHY 83

[86] S. Li, K. Jia, Y. Wen, T. Liu, and D. Tao, “Orthogonal deep neural net-
works,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021.

[87] J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, “Orthogonal convolutional
neural networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[88] H. Federer, “Curvature measures,” Transactions of the American Mathemat-
ical Society, 1959.

[89] S. Lang, Fundamentals of differential geometry. Springer Science & Business
Media, 2012, vol. 191.

[90] T. Sakai, “On riemannian manifolds admitting a function whose gradient is
of constant norm,” Kodai Mathematical Journal, 1996.

[91] B. Schölkopf, A. J. Smola, F. Bach, et al., Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2002.

[92] B. Prach and C. H. Lampert, “1-lipschitz neural networks are more expres-
sive with n-activations,” arXiv preprint arXiv:2311.06103, 2023.

[93] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large
scale optimization,” Mathematical programming, 1989.

[94] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueck-
ert, and Z. Wang, “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[95] L. Béthune, T. Boissin, M. Serrurier, F. Mamalet, C. Friedrich, and A. Gon-
zalez Sanz, “Pay attention to your loss: Understanding misconceptions about
lipschitz neural networks,” in Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[96] E. M. Boczko and T. R. Young, The signed distance function: A new tool
for binary classification, 2005. arXiv: cs/0511105.

[97] A. Abdollahpourrostam, M. Abroshan, and S.-M. Moosavi-Dezfooli, “Revis-
iting deepfool: Generalization and improvement,” arXiv preprint arXiv:2303.12481,
2023.

[98] L. Béthune, P. Novello, T. Boissin, G. Coiffier, M. Serrurier, Q. Vincenot,
and A. Troya-Galvis, Robust one-class classification with signed distance
function using 1-lipschitz neural networks, 2023. [Online]. Available: https:
//hal.science/hal-03977272 (visited on 02/13/2023).

[99] L. Béthune and M. Serrurier, “Certifiable metric one class learning with
adversarially trained lipschitz classifier,” in NeurIPS ML Safety Workshop,
2022.

https://arxiv.org/abs/cs/0511105
https://hal.science/hal-03977272
https://hal.science/hal-03977272


84 BIBLIOGRAPHY



Acknowledgment

A PhD is a long journey, and I am glad I had the chance to share it with so many
interesting people. A huge thanks to Prof. Tommaso Cucinotta, who first guided
me into the world of research, suggesting that I pursue a PhD, and whose conta-
gious enthusiastic curiosity is a constant font of inspiration. An immense thanks
to my supervisor, Prof. Giorgio Buttazzo, who guided me through the PhD, and
whose patience and support were fundamental during the whole period. A sincere
thanks to my tutor Prof. Alessandro Biondi, who supported me during the whole
PhD, dwelling into the most technical details, and whose passion for the research
and precision-oriented research perspective are a constant source of inspiration.
A huge thanks to Prof. Battista Biggio, for the interesting conversations at the
summer schools and the workshops, and for the support in finding a study abroad
opportunity. An immense thanks to Prof. Christoph Lampert, who accepted me
at the ISTA sharing his deep knowledge and expertise. Filippo, whose knowledge
and interest in broader topics turns coffee pauses into a moment of learning and
exploration. Giacomo, for the guidance during my period as a research fellow, and
the constant support. Ara and Aromolo for the funny conversations and sugges-
tions. Giulio for being a real brother-in-arm, sharing suggestions and ideas, and for
being close either in the good or the bad times. Thanks to Federico and Edoardo
for the interesting discussions. Thanks to Marco Pacini and Lorenzo De Marinins,
for their inclusivity (e.k.a inceptionism attitude) and for being “the mental coach
I wondered I had since my childhood∗”. Gianluca D’Amico, for supporting me
in the battle against evil capitalism and knowledge-prostitution. Arman, for an-
swering with incredible patience and dedication to all my dummy questions about
physics. Zini, for reminding me that, at 12, there is no problem severe enough
to break the call for mensa. Gabri Serra for reminding me that there is always
enough time between an amaro and the last train. A huge thanks to Pietro Fara
(Paolo†), whose attitude toward life is admirable, for the countless jams and funny
moments. Thanks to Bernd for the nice moments we shared in Vienna, and for
including me in nice projects either inside or outside the academy. Thanks to the
new entries of the lab, Aristide, Giulia and Sania, for the funny moments and
for bringing new and fresh research topics. An immense thanks to my childhood
friends Andrea, Antonio, Daniele, Enrico, Fabio, Gabriele, Giacomo, Gianmaria,
and Marco who know exactly zero of machine learning and DNNs, and hence,
helped me the most reminding me that good life doesn’t always require proofs. A
special thanks go to my Brother, my Mother and my Father, for their presence
and support in every moment.

∗Gavazzi, 2021
†alias for Piero

85


	1 Introduction
	1.1 Structure of the thesis

	2 Minimal Adversarial Perturbation
	2.1 Definitions and Theoretical discussions
	2.1.1 The case of a binary classifier
	2.1.2 Does the error estimations apply to DNN?

	2.2 Existing methods
	2.2.1 Challenges in adversarial robustness
	2.2.2 Penalty-based methods
	2.2.3 Toward the online computation of map
	2.2.4 The deepfool method
	2.2.5 The verification of DNNs

	2.3 MAP via root-finding algorithms
	2.3.1 The closest boundary strategy
	2.3.2 Fast outer boundary strategy
	2.3.3 Root-finding algorithms
	2.3.4 Error estimation for multi-class classifiers

	2.4 Empirical results
	2.4.1 Groundtruth distance estimation
	2.4.2 Experimental Settings
	2.4.3 Comparing distances
	2.4.4 Empirical estimation of the tubular neighborhood
	2.4.5 Adversarial robustness in the tubular neighborhood
	2.4.6 Comparison with CLEVER


	3 1-Lipschitz Deep Neural Networks
	3.1 1-Lipschitz Layers
	3.1.1 Spectral norm and orthogonal projection
	3.1.2 Parameterized 1-Lipschitz Layers
	3.1.3 1-Lipschitz excluded from the comparison

	3.2 Theoretical Comparison
	3.2.1 Analysis of the computational complexity
	3.2.2 Analysis of the training memory requirements

	3.3 Methodology
	3.3.1 Architecture
	3.3.2 Training
	3.3.3 Random search of hyperparameter
	3.3.4 Datasets
	3.3.5 Metrics

	3.4 Experimental Results
	3.4.1 Training and inference times
	3.4.2 Training memory requirements
	3.4.3 Certified robust accuracy


	4 Signed Distance Classifiers
	4.1 Related works
	4.2 Signed Distance Classifier
	4.2.1 The case of a binary classifier
	4.2.2 A characterization property
	4.2.3 Extension to multiclass classifiers

	4.3 Unitary-gradient neural networks
	4.3.1 Gradient norm preserving layers
	4.3.2 Unitary pair difference layers
	4.3.3 Unitary-Gradient Neural Network Architecture

	4.4 Experimental Results
	4.4.1 Experimental Setup
	4.4.2 Accuracy Analysis
	4.4.3 MAP estimation through UGNN
	4.4.4 Certifiable robust accuracy


	5 Conclusions and Future Works
	5.1 Summary of the contributions
	5.2 Impact of the contributions
	5.3 Takeways and future directions

	Bibliography
	Acronyms

